分析:(1)化簡函數(shù),利用和的導數(shù)法則及冪函數(shù)的導數(shù)公式求出導函數(shù)
(2)先化簡函數(shù),再利用導數(shù)的運算法則求出導函數(shù).
(3)利用三角函數(shù)的二倍角公式化簡函數(shù),利用差的導數(shù)法則及三角函數(shù)的導數(shù)公式求出導函數(shù).
(4)利用商的導數(shù)運算法則求出導函數(shù).
(5)先化簡函數(shù),再利用和差的導數(shù)運算法則求出導函數(shù).
解答:解:(1)∵y=x
3+1+
,
∴y′=3x
2-
(2)先化簡,y=
•
-
+
-1=-
x+
x-∴y′=-
x--
x-=
(1+
)
(3)先使用三角公式進行化簡.
y=x-sin
cos
=x-
sinx
∴y′=(x-
sinx)′=x′-
(sinx)′=1-
cosx
(4)y′=
(x2)′ sinx-x2*(sinx)′′ |
sin2x |
=
;
(5)∵y=3
x-x+5-9
x∴y′=3*(
x)'-x'+5'-9(
x)'=3*
x-1+0-9*(-
)
x=
(1+)-1
點評:本題考查利用導數(shù)運算法則求函數(shù)的導函數(shù)時,先化簡函數(shù)解析式,再利用運算法則及基本初等函數(shù)的導數(shù)公式求.