【題目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.
(1)求A∩B及A∪C;
(2)若U=R,求.
【答案】(1) A∩B={x|3≤x≤7},A∪C={x|x≤﹣3或x>﹣2} (2) A∩U(B∩C)={x|x≥6或x≤﹣3}
【解析】試題分析:首先解不等式,化簡(jiǎn)集合A和C,再利用集合運(yùn)算求出集合A與B的交集及集合A與C的并集;再求出集合B與C的交集,再求出B和C交集的補(bǔ)集,最后再求與集合A的交集.解題時(shí)注意集合的交、并、補(bǔ)的運(yùn)算的定義,無限數(shù)集求交、并、補(bǔ)時(shí),使用的工具是數(shù)軸.
試題解析:
(1)集合A中的不等式解得:x≥3或x≤﹣3,即A={x|x≥3或x≤﹣3};
集合C中的不等式解得:﹣2<x<6,即C={x|﹣2<x<6},
∴A∩B={x|3≤x≤7},A∪C={x|x≤﹣3或x>﹣2};
(2)∵B∩C={x|﹣1<x<6},全集U=R,
∴U(B∩C)={x|x≤﹣1或x≥6},
則A∩U(B∩C)={x|x≥6或x≤﹣3}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子商務(wù)的發(fā)展,人們的購物習(xí)慣正在改變,基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決.小王是位網(wǎng)購達(dá)人,每次購買商品成功后都會(huì)對(duì)電商的商品和服務(wù)進(jìn)行評(píng)價(jià).現(xiàn)對(duì)其近年的200次成功交易進(jìn)行評(píng)價(jià)統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示.
對(duì)服務(wù)好評(píng) | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品好評(píng) | 80 | 40 | 120 |
對(duì)商品不滿意 | 70 | 10 | 80 |
合計(jì) | 150 | 50 | 200 |
(1)是否有的把握認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? 請(qǐng)說明理由;
(2)現(xiàn)從這200次交易中,按照“對(duì)商品好評(píng)”和“對(duì)商品不滿意”采用分層抽樣取出5次交易,然后從這5次交易中任選兩次進(jìn)行觀察,求這兩次交易中恰有一次“對(duì)商品好評(píng)”的概率.
附:(其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
①若,則的最大值為________;
②若函數(shù)有兩個(gè)零點(diǎn),則的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為1,則下列四個(gè)命題正確的是( )
A.直線BC與平面所成的角等于B.點(diǎn)C到面的距離為
C.兩條異面直線和所成的角為D.三棱柱外接球表面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩點(diǎn)都在以PC為直徑的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的體積為,則三棱錐P-ABC表面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,上頂點(diǎn)為,直線的斜率為,且原點(diǎn)到直線的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點(diǎn)的直線:與橢圓交于兩點(diǎn),且與圓相切.試探究的周長(zhǎng)是否為定值,若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從生產(chǎn)的一批產(chǎn)品中抽取200盒作為樣本,測(cè)量產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,該指標(biāo)值越高越好.由測(cè)量結(jié)果得到如下頻率分布直方圖:
(Ⅰ)求,并試估計(jì)這200盒產(chǎn)品的該項(xiàng)指標(biāo)的平均值;
(Ⅱ)國(guó)家有關(guān)部門規(guī)定每盒產(chǎn)品該項(xiàng)指標(biāo)值不低于150均為合格,且按指標(biāo)值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個(gè)等級(jí),其中為優(yōu)良,不高于185為合格,不低于215為優(yōu)秀.用樣本的該項(xiàng)質(zhì)量指標(biāo)值的頻率代替產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的概率.
①求產(chǎn)品該項(xiàng)指標(biāo)值的優(yōu)秀率;
②現(xiàn)從這批產(chǎn)品中隨機(jī)抽取3盒,求其中至少有1盒該項(xiàng)質(zhì)量指標(biāo)值為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80分”,估計(jì)的概率;
(Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)?jiān)诖痤}卡上將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
參考公式及數(shù)據(jù):,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面使用類比推理,得到的結(jié)論正確的是( )
A. 直線,若,則.類比推出:向量,,,若∥,∥,則∥.
B. 三角形的面積為,其中,,為三角形的邊長(zhǎng),為三角形內(nèi)切圓的半徑,類比推出,可得出四面體的體積為,(,,,分別為四面體的四個(gè)面的面積,為四面體內(nèi)切球的半徑)
C. 同一平面內(nèi),直線,若,則.類比推出:空間中,直線,若,則.
D. 實(shí)數(shù),若方程有實(shí)數(shù)根,則.類比推出:復(fù)數(shù),若方程有實(shí)數(shù)根,則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com