已知△ABC和平面ABC外一點O且有
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則x+y+z=1是四點P、A、B、C共面的(  )
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)四點共面的等價條件,結(jié)合充分條件和必要條件的定義進行判斷即可.
解答: 解:由△ABC和平面ABC外一點O若滿足
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),
根據(jù)四點共面的性質(zhì)一定有x+y+z=1,即必要性成立,
若x+y+z=1,則
OP
=(1-y-z)
OA
+y
OB
+z
OC
,
AP
=y
AB
+z
AC
,
由共面定理可知向量
AP
AB
,
AC
,
所以P,A,B,C四點共面;故充分性成立,
則x+y+z=1是四點P、A、B、C共面的充要條件,
故選:C.
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)空間四點共面的等價條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=mcosx+nsinx(mn≠0)的一條對稱軸方程為x=
π
3
,則以
a
=(m,n)為方向向量的直線的傾斜角為( 。
A、45°B、60°
C、120°D、135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩直線3x+y-3=0與6x+my+1=0平行,則它們之間的距離為( 。
A、4
B、
2
13
13
C、
7
20
10
D、
5
26
13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex+a的導函數(shù)f′(x)滿足f′(1)=1,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:a>0,p:x2-8x-20>0,q:x2-2x+1-a2>0,且p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x2=4”是“x=2”成立的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,0),B(4,3),C(2,4),D(0,2),試證明四邊形ABCD是梯形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
1
2
,求sin2α、cos2α和tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合U={1,2,3,4,5,6,7},A={2,4,5,7,},B={3,4,5},則(∁UA)∪B=
 

查看答案和解析>>

同步練習冊答案