在所有棱長都相等的斜三棱柱中,已知,,且,連接
(1)求證:平面
(2)求證:四邊形為正方形.
(1)略(2)略
(1)證明本小題的關鍵是證明,,再證,問題得證.
(2)證明本小題的關鍵是證明:,進而關鍵是證明,從而說明其是矩形,又因為此四邊形本身是菱形,所以所證四邊形是正方形.問題得證
(1)證明:因為是菱形,所以
,所以            
因為,所以      …………………4分  
因為,所以
,所以   ………………………8分
(2)證明:因為,
所以, ……………………………10分
又因為,所以, 
所以
所以四邊形為正方形
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面為正方形,,分別是的中點.
(I)求證:平面;
(II)求證:;
(III)設PD="AD=a," 求三棱錐B-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點,SE=2EB   
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是異面直線,,,,則下列命題中是真命題的為
A.分別相交B.都不相交
C.至多與中的一條相交D.至少與中的一條相交

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知三棱柱的側棱與底面垂直,⊥AC,M是的中點,N是BC的中點,點P在直線 上,且滿足.
(1)當取何值時,直線PN與平面ABC所成的角最大?
(2)若平面PMN與平面ABC所成的二面角為,試確定點P的位置.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是邊長為的正方形,ABEF是矩形,且二面角CABF是直二面角,,G是EF的中點,
(1)求GB與平面AGC所成角的正弦值.
(2)求二面角B—AC—G的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在空間四邊形ABCD中,AD=BC=2,E、F分別是AB、CD的中點,EF=,則異面直線AD與BC所成角的大小為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若空間四邊形ABCD的兩對角線AC、BD的長分別是8和12,過AB的中點E且平行于BD、AC的截面四邊形的周長是_____.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一平面截一球得到直徑為2的圓面,球心到這平面的距離為3,則該球的體積是        

查看答案和解析>>

同步練習冊答案