(2013•濟寧二模)平面向量
a
b
的夾角為
π
3
a
=(2,0),|
b
|=1,則|
a
+
b
|等于(  )
分析:利用向量數(shù)量積得性質(zhì)可得|
a
+
b
|=
(
a
+
b
)2
=
a
2
+
b
2
+2
a
b
,把已知代入即可.
解答:解:∵向量
a
b
的夾角為
π
3
,
a
=(2,0),|
b
|=1,
∴|
a
+
b
|=
(
a
+
b
)2
=
a
2
+
b
2
+2
a
b
=
22+12+2×2×1×cos
π
3
=
7

故選A.
點評:熟練掌握向量數(shù)量積得性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)已知圓(x-a)2+(y-b)2=r2的圓心為拋物線y2=4x的焦點,且與直線3x+4y+2=0相切,則該圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)將函數(shù)y=2cos2x的圖象向右平移
π
2
個單位長度,再將所得圖象的所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),得到的函數(shù)解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)對于平面α和共面的直線m,n,下列命題是真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)定義在(0,
π
2
)上的函數(shù)f(x),其導(dǎo)函數(shù)是f′(x),且恒有f(x)<f′(x)•tanx成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濟寧二模)設(shè)二次函數(shù)f(x)=ax2-4x+c(x∈R)的值域為[0,+∞),則
1
c
+
9
a
的最小值為( 。

查看答案和解析>>

同步練習(xí)冊答案