精英家教網 > 高中數學 > 題目詳情
已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一條漸近線為y=kx(k>0),離心率e=
5
k
,則雙曲線方程為( 。
A、
x2
a2
-
y2
4a2
=1
B、
x2
3b2
-
y2
b2
=1
C、
x2
4b2
-
y2
b2
=1
D、
x2
5b2
-
y2
b2
=1
分析:首先由焦點在x軸上的雙曲線的漸近線方程為y=±
b
a
x,可得
b
a
=k;然后根據雙曲線的離心率e=
c
a
=
5
k,可消去k得a、b、c的關系式;再結合雙曲線的性質a2+b2=c2,即可整理出答案.
解答:解:因為雙曲線的一條漸近線為y=kx(k>0),所以
b
a
=k,
e=
c
a
=
5
k
,所以c=
5
b,
且有a2+b2=c2,所以a2=4b2,
所以雙曲線的方程為
x2
4b2
-
y2
b2
=1

故選C.
點評:本題考查雙曲線的標準方程與性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習冊答案