分析 (1)利用二倍角公式及正弦定理可得b=2acosA,又$b=\sqrt{3}a$,從而解得cosA=$\frac{\sqrt{3}}{2}$,可解得B,C的值,即可得解cosC的值.
(2)由(1)可得:b=2acosA,又b2=2ac,即可解得cosA=$\frac{c}$,利用余弦定理可求b2+c2=a2,由勾股定理可求A,從而得解.
解答 解:(1)∵B=2A.
∴sinB=sin2A=2sinAcosA,
∵$\frac{a}{sinA}=\frac{sinB}=\frac{2sinAcosA}$,sinA>0,
∴可得b=2acosA,又$b=\sqrt{3}a$,
∴$\sqrt{3}$=2cosA,解得cosA=$\frac{\sqrt{3}}{2}$,A=$\frac{π}{6}$,B=$\frac{π}{3}$,C=$\frac{π}{2}$
∴cosC=0.
(2)由(1)可得:b=2acosA,又b2=2ac,
∴解得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{c}$.整理可得:b2+c2=a2,
故由勾股定理可得:A=$\frac{π}{2}$,cosA=0.
點(diǎn)評(píng) 本題主要考查了二倍角公式、三角形內(nèi)角和定理及正弦定理、勾股定理的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-2) | B. | [-$\frac{15}{7}$,-2) | C. | (-2,+∞) | D. | (-$\frac{15}{7}$,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 21 | B. | $-\frac{181}{25}$ | C. | -$\frac{19}{25}$ | D. | $\frac{19}{25}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com