精英家教網 > 高中數學 > 題目詳情
如圖,在等腰直角△OPQ中,∠POQ=90°,OP=2,點M在線段PQ上,
(Ⅰ)若OM=,求PM的長;
(Ⅱ)若點N在線段MQ上,且∠MON=30°,問:當∠POM取何值時,△OMN的面積最小?并求出面積的最小值.
【答案】分析:(Ⅰ)在△OMP中,利用∠OPM=45°,OM=,OP=2,通過余弦定理,求PM的長;
(Ⅱ)利用正弦定理求出ON、OM,表示出△OMN的面積,利用兩角和與差的三角函數化簡函數我一個角的一個三角函數的形式,通過角α的范圍,得到相位的范圍,然后利用正弦函數的值域求解三角形面積的最小值,求出面積的最小值.
解答:解:(Ⅰ)在△OMP中,∠OPM=45°,OM=,OP=2
由余弦定理可得,OM2=OP2+MP2-2×OP•MPcos45°,
解得PM的長為1或3;
(Ⅱ)設∠POM=α,0°≤α≤60°,在△OMP中,由正弦定理可得:,
OM=
同理,ON=

=
=
=
=
=
=
因為0°≤α≤60°,所以30°≤2α+30°≤150°,
所以當α=30°時,sin(2α+30°)的最大值為1,
此時,△OMN的面積最小,面積的最小值
點評:本題考查正弦定理與余弦定理在三角形中的應用,兩角和與差的三角函數的應用,三角形的最值的求法,考查計算能力與轉化思想的應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在多面體ABCDE中,底面△ABC為等腰直角三角形,且∠ACB=90°,側面BCDE是菱形,O點是BC的中點,EO⊥平面ABC.
(1)求異直線AC和BE所成角的大小;
(2)求平面ABE與平面ADE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖在等腰直角△ABC中,點O是斜邊BC的中點,過點O的直線分別交直線AB、AC于不同的兩點M、N,若
AB
=m
AM,
AC
=n
AN
,則mn的最大值為(  )
A、
1
2
B、1
C、2
D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在平面直角坐標系xoy中,拋物線y=
1
18
x2-
4
9
x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當t∈(0,
9
4
)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xoy中,拋物線yx 2x-10與x軸的交點為A,與y軸的交點為點B,過點Bx軸的平行線BC,交拋物線于點C,連結AC.現(xiàn)有兩動點PQ分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OCPQ相交于點D,過點DDEOA,交CA于點E,射線QEx軸于點F.設動點PQ移動的時間為t(單位:秒)

(1)求A,B,C三點的坐標和拋物線的頂點坐標;

(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;

(3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;

(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

 


查看答案和解析>>

科目:高中數學 來源:2010-2011學年廣東省珠海一中高三(下)第一次調研數學試卷(理科)(解析版) 題型:解答題

如圖,在平面直角坐標系xoy中,拋物線y=x2-x-10與x軸的交點為A,與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC、現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒)
(1)求A,B,C三點的坐標和拋物線的頂點坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當t∈(0,)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

同步練習冊答案