設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,點(an+1,Sn)在直線2x+y-2=0上.
(Ⅰ)求數(shù)列{an}的通公式;
(Ⅱ)若bn=(n+1)an,求數(shù)列{bn}的前n項和Tn.
分析:(I)數(shù)列{a
n}中,前n項和為S
n,點(a
n+1,S
n)在直線上,則2a
n+1+S
n-2=0;由遞推關(guān)系,得
,驗證
=
滿足關(guān)系即得數(shù)列{a
n}的通公式;
(II)由(I)知,
bn=(n+1)()n-1,數(shù)列{b
n}的前n項和T
n:T
n=2×
+3×
+4×
+…+
(n+1);則∴
T
n=2×
+3×
+4×
+…+
(n+1);作差,得
T
n,從而得 T
n.
解答:解:(I)在數(shù)列{a
n}中,前n項和為S
n,且點(a
n+1,S
n)在直線2x+y-2=0上;
所以,2a
n+1+S
n-2=0,則
| | 2an+1+Sn-2=0 | 2an+Sn-1-2=0(n≥2) |
| | ?2an+1=an(n≥2) |
| |
,
(*),又∵2a
2+s
1-2=0,∴a
2=
,∴
=
滿足關(guān)系式(*),
∴數(shù)列{a
n}的通公式為:
an=()n-1;
(II)由(I)知,
bn=(n+1)()n-1,數(shù)列{b
n}的前n項和T
n有:
T
n=2×
+3×
+4×
+…+
(n+1)①;
∴
T
n=2×
+3×
+4×
+…+
(n+1)②;
①-②,得
T
n=2×
+
+
+
+…+
-
(n+1)=1+
-
=3-
;
∴T
n=6-
.
點評:本題(I)考查了由遞推關(guān)系求數(shù)列的通項,需要驗證n=1時成立;(II)考查了用錯位相減法對數(shù)列求和,需要注意作差后的首、末項情況.