(2013•房山區(qū)一模)在極坐標(biāo)系中,圓ρ=2sinθ的圓心到直線ρcosθ-2ρsinθ+1=0的距離為( 。
分析:先將原極坐標(biāo)方程兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解即得.
解答:解:將原極坐標(biāo)方程ρ=2sinθ,化為:
ρ2=2ρsinθ,
化成直角坐標(biāo)方程為:x2+y2-2y=0,
它表示圓心在(0,1)的圓,
直線ρcosθ-2ρsinθ+1=0的直角坐標(biāo)方程為x-2y+1=0,
∴所求的距離是:
|0-2×1+1|
1+4
=
5
5

故選:A.
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)設(shè)集合M是R的子集,如果點(diǎn)x0∈R滿足:?a>0,?x∈M,0<|x-x0|<a,稱x0為集合M的聚點(diǎn).則下列集合中以1為聚點(diǎn)的有( 。
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知函數(shù)f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)已知全集U=R,集合M={x|x≤1},N={x|x2>4},則M∩(?RN)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)執(zhí)行如圖所示的程序框圖.若輸出S=15,則框圖中①處可以填入( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•房山區(qū)一模)在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,ABCD為直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F(xiàn)為AD,PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)若PC與AB所成角為45°,求PE的長(zhǎng);
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案