已知橢圓C長(zhǎng)軸的兩個(gè)頂點(diǎn)為A(-2,0),B(2,0),且其離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若N是直線x=2上不同于點(diǎn)B的任意一點(diǎn),直線AN與橢圓C交于點(diǎn)Q,設(shè)直線QB與以NB為直徑的圓的一個(gè)交點(diǎn)為M(異于點(diǎn)B),求證:直線NM經(jīng)過定點(diǎn).

 

【答案】

(Ⅰ);(Ⅱ).

【解析】

試題分析:(Ⅰ)根據(jù)斜率公式,有斜率乘積等于整理即得,注意;(Ⅱ)設(shè)直線的方程,與橢圓方程組成方程組,消去,由韋達(dá)定理求點(diǎn)的坐標(biāo),根據(jù)直線與以為直徑的圓的另一個(gè)交點(diǎn)為,得,從而得到直線的方程,確定恒過的定點(diǎn).

試題解析:(Ⅰ)設(shè),由得   ,其中,

整理得點(diǎn)的軌跡方程為.                   (4分)

(Ⅱ)設(shè)點(diǎn),則直線的方程為

解方程組,消去

設(shè),則,(8分)

從而,又

直線與以為直徑的圓的另一個(gè)交點(diǎn)為,,

方程為,即,過定點(diǎn),        (12分)

考點(diǎn):橢圓方程,直線與橢圓的關(guān)系,定點(diǎn)問題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)到長(zhǎng)軸的兩個(gè)端點(diǎn)的距離分別為2+
3
2-
3
,直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E,F(xiàn)兩點(diǎn).
(1)求此橢圓的方程;
(2)若
ED
=6
DF
,求k的值;
(3)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B為橢圓C:
x2
m+1
+
y2
m
=1
的長(zhǎng)軸的兩個(gè)端點(diǎn),P是橢圓C上的動(dòng)點(diǎn),且∠APB的最大值是
3
,則m=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長(zhǎng)軸的兩個(gè)端點(diǎn),C,D是橢圓上關(guān)于x軸對(duì)稱的兩點(diǎn),直線AC,BD的斜率分別為k1,k2,且k1k2≠0.若|k1|+|k2|的最小值為
3
,則橢圓的離心率為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:橢圓M的中心為O,長(zhǎng)軸的兩個(gè)端點(diǎn)為A、B,右焦點(diǎn)為F,AF=5BF.若橢圓M經(jīng)過點(diǎn)C,C在AB上的射影為F,且△ABC的面積為5.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當(dāng)點(diǎn)P(m,n)在橢圓M上運(yùn)動(dòng)時(shí),直線l與圓O恒相交;并求直線l被圓O截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案