已知雙曲線-=1的左、右焦點(diǎn)分別F1、F2,O為雙曲線的中心,P是雙曲線右支上的點(diǎn),△PF1F2的內(nèi)切圓的圓心為I,且⊙I與x軸相切于點(diǎn)A,過(guò)F2作直線PI的垂線,垂足為B,若e為雙曲線的率心率,則( )
A.|OB|=e|OA|
B.|OA|=e|OB|
C.|OB|=|OA|
D.|OA|與|OB|關(guān)系不確定
【答案】分析:根據(jù)題意,利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|-|PF2|=2a,轉(zhuǎn)化為|AF1|-|AF2|=2a,從而求得點(diǎn)H的橫坐標(biāo).再在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,從而在三角形F1CF2中,利用中位線定理得出OB,從而解決問(wèn)題.
解答:解:F1(-c,0)、F2(c,0),內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)A
∵|PF1|-|PF2|=2a,及圓的切線長(zhǎng)定理知,
|AF1|-|AF2|=2a,設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,
則|(x+c)-(c-x)|=2a
∴x=a;
|OA|=a,
在三角形PCF2中,由題意得,它是一個(gè)等腰三角形,PC=PF2
∴在三角形F1CF2中,有:
OB=CF1=(PF1-PC)=(PF1-PF2)=×2a=a.
∴|OB|=|OA|.
故選C.
點(diǎn)評(píng):本題考查雙曲線的定義、切線長(zhǎng)定理.解答的關(guān)鍵是充分利用平面幾何的性質(zhì),如三角形內(nèi)心的性質(zhì)等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線-=1的左、右焦點(diǎn)為F1、F2,左準(zhǔn)線為l,試問(wèn):能否在雙曲線的左支上找到一點(diǎn)P,使得|PF1|是P到l的距離d與|PF2|的等比中項(xiàng)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線-=1的左焦點(diǎn)為F1,左,右頂點(diǎn)為A1,A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1,A1A2為直徑的兩個(gè)圓的位置關(guān)系為

A.相交           B.相切           C.相離              D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1的左焦點(diǎn)為F1,左、右頂點(diǎn)為A1、A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1、A1A2為直徑的兩個(gè)圓的位置關(guān)系為(    )

A.相交          B.相切              C.相離              D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1的左支上有一點(diǎn)M,右焦點(diǎn)為F,N是MF的中點(diǎn),且|ON|=4,則M到右準(zhǔn)線的距離為 (    )

A.18                 B.              C.           D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P為雙曲線上一點(diǎn),|OP|=,|PF1|、|F1F2|、|PF2|成等比數(shù)列,求最小的自然數(shù)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案