已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x
.若函數(shù)f(x)在x=1處取得極大值,則實數(shù)a的值為( 。
A、1B、0C、2D、0或1
考點:利用導數(shù)研究函數(shù)的極值
專題:導數(shù)的概念及應用
分析:先求出函數(shù)f(x)的導數(shù),求出a的值,再根據(jù)函數(shù)在x=1處取極大值,進而解得a=1,問題解決.
解答: 解:∵f′x)=x2-(2a+1)x+(a2+a),
∴f′(1)=1-(2a+1)+a2+a=a2-a=0,
解得:a=0,a=1,
當a=0時,f′(x)=x2-x,
令f′(x)>0,解得;x>1,x<0,
∴f(x)在(-∞,0),(1,+∞)遞增,在(0.1)遞減,
∴x=0是函數(shù)f(x)的極大值點,不合題意,舍,
故選:A.
點評:本題考察了利用導數(shù)求函數(shù)的單調性,求函數(shù)的最值問題,本題是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z滿足(z-1)(1+2i)=2i(i為虛數(shù)單位),則z的虛部是(  )
A、
2
5
i
B、
2
5
C、
3
5
D、
9
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,lnx+x-2=0,命題q:?x∈R,2x≥x2,則下列命題中為真命題的是( 。
A、p∧qB、¬p∧q
C、p∧¬qD、¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為復數(shù)單位,若
1+ai
i
=1+bi(a,b∈R),則a+b=( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a1=1,公差d≠0,a1、a2、a5成等比,則a2014的值為( 。
A、4023B、4025
C、4027D、4029

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點列{An}滿足:|
OA1
|=1,|
OAi+1
|=2|
OAi
|+1,Ai均在坐標軸上(i∈N*),則向量
OA1
+
OA2
+…+
OA2014
=(  )
A、(22014-1,0)
B、(22016-1,22015-1)
C、(
22014-1
5
,
3(22014-1)
5
D、(
22016-1
5
,
22015-3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
3x-1
+
1
a
是奇函數(shù),則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1-2cos2
ωx
2
,1),
b
=(-1,cos(ωx+
π
3
)),ω>0,點A、B為函數(shù)f(x)=
a
b
的相鄰兩個零點,|AB|=π.
(Ⅰ) 求ω的值;
(Ⅱ) 若f(x)=
3
3
,x∈(0,
π
2
),求sinx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
OA
=(0,-1),
OB
=(2,3),
OC
=(2,-1)
(Ⅰ)求
AB
AC
;
(Ⅱ)若
AC
•(
a
+
AC
)=6,
a
AC
的夾角為
π
3
,求|
a
-
AC
|的值.

查看答案和解析>>

同步練習冊答案