,方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且
(1)求數(shù)列{xn}的通項公式;
(2)若,求和Sn=b1+b2+…+bn
(3)問:是否存在最小整數(shù)m,使得對任意n∈N*,有成立,若存在,求出m的值;若不存在,說明理由.
【答案】分析:(1)由方程f(x)=x有唯一解,解得a,從而得到f(x).
再由f(x1)=,解得x1最后由f(xn)=xn+1得到由等差數(shù)列的定義求解.
(2)將xn代入an可求得an,再代入bn=解得bn,最后由錯位相消法求和.
(3)由f(xn)=xn+1恒成立,用最值法求解,只要即可.
解答:解:(1)∵方程f(x)=x有唯一解,

,即
,
又由∵f(xn)=xn+1

數(shù)列是首項為,公差為的等差數(shù)列(4分)

.(6分)

(2)將xn代入an可求得

.(10分)

(3)∵對n∈N*恒成立,
∴只要即可,
.(12分)
即要,∴m>2,故存在最小的正整數(shù)m=3.(14分)
點評:本題主要考查函數(shù)與數(shù)列的綜合運用,主要涉及了數(shù)列的定義,通項及錯位相消法求和,同時,還考查了構造數(shù)列研究通項及前n項和及恒成立問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1
(Ⅱ)設直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足方程f(x)=x的根x0稱為函數(shù)y=f(x)的不動點,設函數(shù)y=f(x),y=g(x)都有不動點,則下列陳述正確的是
(4)
(4)

(1)y=f(g(x))與y=f(x)具有相同數(shù)目的不動點  (2)y=f(g(x))一定有不動點
(3)y=f(g(x))與y=g(x)具有相同數(shù)目的不動點  (4)y=f(g(x))可以無不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•三明模擬)(1)選修4-2:矩陣與變換
設矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q極坐標為(2,
4
)

(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案