在直角坐標(biāo)平面上,O為原點,M為動點,.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.
【答案】分析:(1)設(shè)點T的坐標(biāo)為(x,y),點M的坐標(biāo)為(x',y'),進(jìn)而可知點M1的坐標(biāo),進(jìn)而根據(jù)表示出點N的坐標(biāo)和N1的坐標(biāo),進(jìn)而表示出,進(jìn)而代入求得x和x'的關(guān)系,y和y'的關(guān)系,代入中求得x和y的關(guān)系,曲線C的方程可得,判斷出曲線C是橢圓.
(2)當(dāng)直線l的斜率不存在時,直線l與橢圓C無交點,所以直線l斜率存在,并設(shè)為k.直線l的方程為y=k(x-5),直線方程與橢圓方程聯(lián)立消去y根據(jù)判別式大于0求得k的范圍,設(shè)交點P(x1,y1),Q(x2,y2),PQ的中點為R(x,y),進(jìn)而根據(jù)韋達(dá)定理表示出x1+x2,進(jìn)而求得R的坐標(biāo),根據(jù)|BP|=|BQ|推斷BR⊥l,進(jìn)而可知k•kBR=-1,進(jìn)而建立等式整理得20k2=20k2-4,結(jié)論不可能成立,進(jìn)而判斷不存在直線l,使得|BP|=|BQ|.
解答:解:(Ⅰ)設(shè)點T的坐標(biāo)為(x,y),點M的坐標(biāo)為(x',y'),則M1的坐標(biāo)為(0,y'),,于是點N的坐標(biāo)為,N1的坐標(biāo)
,所以

由此得
,
即所求的方程表示的曲線C是橢圓.
(Ⅱ)點A(5,0)在曲線C即橢圓的外部,當(dāng)直線l的斜率不存在時,直線l與橢圓C
無交點,所以直線l斜率存在,并設(shè)為k.直線l的方程為y=k(x-5).
由方程組
依題意
當(dāng)時,設(shè)交點P(x1,y1),Q(x2,y2),PQ的中點為R(x,y),

又|BP|=|BQ|?BR⊥l?k•kBR=-1,
,
而20k2=20k2-4不可能成立,所以不存在直線l,使得|BP|=|BQ|.
點評:本題主要考查了橢圓的標(biāo)準(zhǔn)方程和橢圓與直線的關(guān)系.當(dāng)涉及直線與圓錐曲線的位置關(guān)系時,常需要把直線方程與圓錐曲線的方程聯(lián)立,借助韋達(dá)定理求得答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上,O為原點,M為動點,|
OM
|=
5
,
ON
=
2
5
5
OM
.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面上,O為原點,M為動點,,.過點M作MM1軸于M1,過N作NN1軸于點N1.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線交曲線C于兩個不同的點P、Q(點Q在A與P之間).

(Ⅰ)求曲線C的方程;

(Ⅱ)證明不存在直線,使得

(Ⅲ)過點P作軸的平行線與曲線C的另一交點為S,若,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(4)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點,M為動點,.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測試卷14(理科)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點,M為動點,.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案