向量
a
=(1,-2),
b
=(6,3),則
a
b
的夾角為(  )
A、60°B、90°
C、120°D、150°
分析:根據(jù)兩個(gè)向量的坐標(biāo)可以求出兩個(gè)向量夾角的余弦,從而求出夾角,有些特殊的題目夾角具有特殊的關(guān)系,就不用代完整的數(shù)量積公式,本題就是兩個(gè)向量垂直,得到角是直角.
解答:解:∵
a
=(1,-2),
b
=(6,3),
a
b
=1×6-2×3=0
a
b

a
b
的夾角為90°,
故選B
點(diǎn)評(píng):本題用 a^b ? a×b=0求出角是直角,這是比較特殊的一種情況,掌握兩個(gè)向量共線、垂直的幾何判斷,會(huì)證明兩向量垂直,以及能解決一些簡(jiǎn)單問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,2),則向量
a
+2
b
與2
a
-
b
(  )
A、垂直的必要條件是x=-2
B、垂直的充要條件是x=
7
2
C、平行的充分條件是x=-2
D、平行的充要條件是x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(1,2),
b
=(x,1),
c
=
a
+2
b
,
d
=2
a
-
b
,且
c
d
,則實(shí)數(shù)x的值等于( 。
A、-
1
2
B、-
1
6
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
.
a
=(1,2,3),
.
b
=(3,0,2),
.
c
=(4,2,X)共面,則X=
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(1,2),
b
=(x,1),
c
=
a
+
b
d
=
a
-
b
,若
c
d
,則實(shí)數(shù)x的值等于
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•菏澤二模)下列命題:
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<loga2<logb2,則a>b>1;
③已知a,b∈R*,2a+b=1,則
2
a
+
1
b
有最小值8;
④已知向量a=(1,2),b=(2,0),若向量λa+b與向量c=(1,-2)共線,則實(shí)數(shù)λ等于-1.
其中,正確命題的序號(hào)為
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案