設(shè)函數(shù)f(x)=sin(2x+
π
3
),則下列結(jié)論正確的是( 。
A.f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱
B.f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對(duì)稱
C.把f(x)的圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)的圖象
D.f(x)的最小正周期為π,且在[0,
π
6
]上為增函數(shù)
由對(duì)稱軸x=
1
2
kπ+
π
6
  k∈Z,A不正確,
π
4
,0)代入函數(shù)表達(dá)式對(duì)B選項(xiàng)檢驗(yàn)知命題錯(cuò);
C平移后解析式為f(x)=sin[2(x+
π
12
)+
π
3
]=sin(2x+
π
2
)=cos2x,故其為偶函數(shù),命題正確;
D.由于x∈[0,
π
6
]時(shí)2x+
π
3
∈[
π
3
,
3
],此時(shí)函數(shù)在區(qū)間內(nèi)不單調(diào),不正確.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π6
)-1(ω>0)的導(dǎo)數(shù)f′(x)的最大值為2,則f(x)的圖象的一個(gè)對(duì)稱中心的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
),現(xiàn)有下列結(jié)論:
(1)f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱;
(2)f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對(duì)稱
(3)把f(x)的圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)的圖象;
(4)f(x)的最小正周期為π,且在[0,
π
6
]上為增函數(shù).
其中正確的結(jié)論有
 
(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+φ)(ω>0,-
π
12
<φ<
π
2
),給出以下四個(gè)論斷:
①f(x)的周期為π; ②f(x)在區(qū)間(-
π
6
,0)上是增函數(shù);
③f(x)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱;④f(x)的圖象關(guān)于直線x=
π
12
對(duì)稱.
以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫(xiě)出你認(rèn)為正確的一個(gè)命題:
 
 
(只需將命題的序號(hào)填在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其圖象的對(duì)稱軸方程;
(2)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,求g (x)在區(qū)間[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)一模)設(shè)函數(shù)f(x)=sin(2x+
π
3
)+2cos2
π
4
-x).
(1)求f(x)的最小正周期及對(duì)稱軸方程;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若f(
C
2
)=
3
+1,c=
6
,cosB=
3
5
,求b.

查看答案和解析>>

同步練習(xí)冊(cè)答案