數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=a,且an+1=2Sn+1,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)a的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)各項(xiàng)不為0的數(shù)列{cn}中,所有滿(mǎn)足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,令cn=
bn-4bn
(n∈N*)
,在(2)的條件下,求數(shù)列{cn}的“積異號(hào)數(shù)”.
分析:(1)根據(jù)an+1=2Sn+1(n∈N*),類(lèi)比可得an=2Sn-1+1(n≥2,n∈N*),兩式相減即可得到結(jié)論;
(2)確定數(shù)列的通項(xiàng),利用錯(cuò)位相減法,可求數(shù)列{bn}的前n項(xiàng)和Tn
(3)確定C1C2=-1<0,n≥2時(shí),Cn>0,即可得到結(jié)論.
解答:解:(1)由已知得an+1=2Sn+1,an=2Sn-1+1(n≥2,n∈N*),
兩式相減得an+1-an=2(Sn-Sn-1)=2an,即an+1=3an(n≥2,n∈N*).
又a2=2S1+1=2a1+1=3=3a1,所以a1=1
所以數(shù)列{an}是以1為首項(xiàng),公比為3的等比數(shù)列;
(2)由(1)得,an=3n-1
∴bn=nan=n•3n-1
∴Tn=1+2•3+3•32+…+n•3n-1,
∴3Tn=1•3+2•32+…+(n-1)•3n-1+n•3n
兩式相減可得:-2Tn=1+3+32+…+3n-1-n•3n,
∴Tn=
2n-1
4
3n+
1
4

(3)由(2)知,bn=n•3n-1
cn=
bn-4
bn
(n∈N*)

C1=-3,C2=
1
3
,∴C1C2=-1<0
∵Cn+1-Cn=
4
bn
-
4
bn+1
=
4(2n+3)
n(n+)•3n
>0
C2=
1
3
>0,∴n≥2時(shí),Cn>0
∴數(shù)列{cn}的“積異號(hào)數(shù)”為1.
點(diǎn)評(píng):本題考查等比數(shù)列,考查數(shù)列的求和,考查新定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿(mǎn)足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿(mǎn)足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
,
1
3
2
3
,
1
4
,
2
4
3
4
,
1
5
2
5
,
3
5
,
4
5
…,
1
n
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿(mǎn)足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能?chē)傻恼切蚊娣e都相等.
其中真命題的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案