已知函數(shù)

    (1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

    (2)當(dāng)時(shí),討論的單調(diào)性.

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)當(dāng)時(shí),,則,又,則曲線在點(diǎn)處的切線斜率為,因此,切線方程為,即

   (2),設(shè),,則符號(hào)相同。

①若,,

當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減。

②若,則,即,解得

當(dāng)時(shí),恒成立,即恒成立,因此上單調(diào)遞減;

當(dāng)時(shí),。可列表如下:

(與符號(hào)一致)

綜上所述:當(dāng)時(shí),上單調(diào)遞減,在單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1+sinx3+cosx
,則該函數(shù)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1-x
2x2-3x-2
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)(x-1)f(
x+1x-1
)+f(x)=x
,其中x≠1,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•崇明縣一模)已知函數(shù)y=-
1-x2
(-1≤x≤0)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•黃浦區(qū)一模)已知函數(shù)y=
1+bx
ax+1
(a>0,x≠-
1
a
)
的圖象關(guān)于直線y=x對(duì)稱.
(1)求實(shí)數(shù)b的值;
(2)設(shè)A、B是函數(shù)圖象上兩個(gè)不同的定點(diǎn),記向量
e1
=
AB
,
e2
=(1,0)
,試證明對(duì)于函數(shù)圖象所在的平面里任一向量
c
,都存在唯一的實(shí)數(shù)λ1、λ2,使得
c
=λ1
e1
+λ2
e2
成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案