年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:河南省普通高中2012屆高三高考適應(yīng)性測(cè)試數(shù)學(xué)理科試題 題型:013
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0]時(shí),f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為
A.x+y=0
B.ex-y+1-e=0
C.ex+y-1-e=0
D.x-y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:金湖二中2009屆高三第一學(xué)期期末模擬考試數(shù)學(xué)試卷 題型:044
定義在(0,+∞)的三個(gè)函數(shù)f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a,且g(x)在x=1處取極值.
(Ⅰ)求a值及h(x)的單調(diào)區(qū)間;
(Ⅱ)求證:當(dāng)1<x<e2時(shí),恒有
(Ⅲ)把h(x)對(duì)應(yīng)的曲線C1向上平移6個(gè)單位后得曲線C2,求C2與g(x)對(duì)應(yīng)曲線C3的交點(diǎn)個(gè)數(shù),并說(shuō)明道理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:北京市石景山區(qū)2012屆高三上學(xué)期期末考試數(shù)學(xué)理科試題 題型:044
已知f(x)=ax-lnx,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在x=1處有極值,求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:單選題
已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個(gè)命題:
(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個(gè)數(shù)為 ( )
A.1 | B.2 |
C.3 | D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專(zhuān)項(xiàng)訓(xùn)練(河北) 題型:選擇題
已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導(dǎo)函數(shù)f′(x)的圖象如圖,則有以下幾個(gè)命題:
(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個(gè)數(shù)為 ( )
A.1 B.2
C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com