(理)已知正數(shù)列{an}中,對任意的正整數(shù)n,都(n+1)an2-anan+12=nan+12成立,且a1=2,則極限
lim
n→∞
an
3n+1
=
 
分析:根據(jù)nan+12=(n+1)an2+anan+1,得到
an+1
an
=
n+1
n
,利用累乘法即可求得該數(shù)列的通項公式,根據(jù)極限的求法即可求得結(jié)果.
解答:解:∵nan+12=(n+1)an2+anan+1
即[(n+1)an-nan+1](an+an+1)=0
∴(n+1)an-nan+1=0 或an+an+1=0
又∵數(shù)列{an}各項均為正數(shù)
an+1
an
=
n+1
n
,
a2
a1
=
2
1
,
a3
a2
=
3
2
a4
a3
=
4
3
an
an-1
=
n
n-1

an
a1
=
n
1
,∴an=2n,
∴極限
lim
n→∞
an
3n+1
=
lim
n→∞
2n  
3n+1
=
2
3
點評:本題考查根據(jù)遞推關(guān)系求數(shù)列通項公式的方法,對于此種類型的題目首先化簡遞推式,推導(dǎo)出相鄰兩項的關(guān)系是解題的關(guān)鍵,考查運算能力,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知以a為首項的數(shù)列{an}滿足:an+1=
an-3,an>3
2anan≤3.

(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對任意正整數(shù)n都成立的k與a;
(3)若a=
3
2m-1
(m∈N﹡),試求數(shù)列{an}的前4m+2項的和s4m+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•楊浦區(qū)二模)(理)已知向量
a
=(x2+1,-x)
,
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},對任意正整數(shù)n,都有bn•(4an2-5)=1成立,設(shè)Sn為數(shù)列{bn}的前n項和,求
lim
n→∞
Sn
;
(3)在點列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(i,j);若不存在,請你寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:楊浦區(qū)二模 題型:解答題

(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設(shè)f(x)在(0,+∞)上取最小值時的自變量x取值為an
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},對任意正整數(shù)n,都有bn•(4an2-5)=1成立,設(shè)Sn為數(shù)列{bn}的前n項和,求
lim
n→∞
Sn

(3)在點列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(i,j);若不存在,請你寫出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省連云港、淮安、徐州、宿遷四市高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

(理)已知以a為首項的數(shù)列{an}滿足:
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對任意正整數(shù)n都成立的k與a;
(3)若(m∈N﹡),試求數(shù)列{an}的前4m+2項的和s4m+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年上海市浦東新區(qū)建平中學(xué)高三(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(理)已知以a為首項的數(shù)列{an}滿足:
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對任意正整數(shù)n都成立的k與a;
(3)若(m∈N﹡),試求數(shù)列{an}的前4m+2項的和s4m+2

查看答案和解析>>

同步練習(xí)冊答案