精英家教網 > 高中數學 > 題目詳情
已知點P(m,3)是拋物線y=x2+4x+n上距點?A(-2,0)最近一點,則m+n等于(    )

A.1                      B.3                   C.5                      D.7

C

解析:由已知得P為拋物線的頂點(-2,3),故3=(-2)2+4×(-2)+n,n=7,m+n=-2+7=5.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線x2=
1
mn
y
異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當的坐標系,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點P(m,3)是拋物線y=x2+4x+n上距點A(-2,0)最近一點,則m+n=( 。

查看答案和解析>>

科目:高中數學 來源:2007年江蘇省南通中學高考數學模擬試卷(解析版) 題型:選擇題

已知點P(m,3)是拋物線y=x2+4x+n上距點A(-2,0)最近一點,則m+n=( )
A.1
B.3
C.5
D.7

查看答案和解析>>

同步練習冊答案