【題目】已知

討論的單調(diào)性;

若在定義域內(nèi)總存在使成立,的最小值

【答案】見解析的最小值是

【解析】試題分析:(1定義域為, ,分類討論得到單調(diào)性情況;(2)分參得到恒成立,令,求導得到上單調(diào)減上單調(diào)增,所以,得。

試題解析:

定義域為

①當,解得 解得

上單調(diào)遞減,上單調(diào)遞增

②當,解得 解得

上單調(diào)遞減,上單調(diào)遞增;

③當, (僅在時等號成立

上單調(diào)遞增;

④當,解得 解得

上單調(diào)遞減,上單調(diào)遞增

(Ⅱ)由已知,在定義域內(nèi)總存在使成立,

使成立

,

上單調(diào)遞增上單調(diào)遞減

所以, 式轉(zhuǎn)化為

使成立

,

,

上單調(diào)減上單調(diào)增

所以, 的最小值是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為. 

(1)當時,求曲線和曲線的交點的直角坐標;

(2)當時,設 分別是曲線與曲線上動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, .

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一名同學家開了一個小賣部,他為了研究氣溫對某種引領銷售的影響,記錄了2015年7月至12月每月15號下午14時的氣溫和當天的飲料杯數(shù),得到如下資料:

該同學確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)取線性回歸方程,再用被選中的2組數(shù)據(jù)進行檢驗.

(1)求選取2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出關于的線性回歸方程;

(3)若有線性回歸方程得到估計,數(shù)據(jù)與所宣稱的檢驗數(shù)據(jù)的誤差不超過3杯,則認為得到的線性回歸方程是理想的,請問(2)所得線性回歸方程是否理想.

附:對于一組數(shù)據(jù),其回歸直線 的斜率和截距的最小二乘法估計分別為: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為增強市民的節(jié)能環(huán)保意識,汕頭市面向全市征召義務宣傳志愿者,從符合條件的 500 名志愿者中隨機抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:

,

(1)求圖中的值,并根據(jù)頻率分布直方圖估計這 500 名志愿者中年齡在歲的人數(shù);

(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場的宣傳活動,再從這 10 名志愿者中選取 3 名擔任主要負責人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產(chǎn)蛋量(單位: )和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根據(jù)散點圖判斷, 哪一個更適宜作為該種雞的時段產(chǎn)蛋量關于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關于的回歸方程;

3)已知時段投入成本的關系為,當時段控制溫度為28℃時,雞的時段產(chǎn)蛋量及時段投入成本的預報值分別是多少?

附:①對于一組具有有線性相關關系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知 , ,平面平面, , , 中點.

(Ⅰ)證明: 平面

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案