2.已知函數(shù)f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.若對任意的a∈[$\frac{1}{2}$,2],不等式f(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,則b的取值范圍為(-∞,$\frac{7}{4}$].

分析 根據(jù)x+$\frac{a}{x}$函數(shù)的性質可判斷當a最小時,x越大函數(shù)值越大,當a越大時,x越小函數(shù)值越大,只需比較最大的即可.

解答 解:∵對任意的a∈[$\frac{1}{2}$,2],不等式f(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,
∴當a=$\frac{1}{2}$時,f(x)最大值為f(1)=1+$\frac{1}{2}$+b=$\frac{3}{2}$+b
當a=2時,f(x)最大值為f($\frac{1}{4}$)=$\frac{1}{4}$+8+b=$\frac{33}{4}$+b
顯然$\frac{33}{4}$+b>$\frac{3}{2}$+b,
∴$\frac{33}{4}$+b≤10,
∴b≤$\frac{7}{4}$,
故答案為:(-∞,$\frac{7}{4}$]

點評 本題考查了對抽象函數(shù)x+$\frac{a}{x}$的深刻理解和恒成立問題的轉換.恒成立問題即最值問題,牢記這一轉換.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.對于二次函數(shù)y=-4x2+8x-3,
(1)指出圖象的開口方向、對稱軸方程、頂點坐標;
(2)說明其圖象經(jīng)過怎樣平移得到y(tǒng)=-4x2的圖象;
(3)求函數(shù)的值域;
(4)分析函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左頂點為A,上下兩個頂點分別為B,C,若左焦點是△ABC的垂心,則橢圓的離心率為$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.從邊長為10cm×16cm的矩形紙板的四角截去四個相同的小正方形,作成一個無蓋的盒子.盒子的高為多少時,盒子的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x3+bx2+cx-1當x=-2時有極值,且在x=-1處的切線的斜率為-3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列說法正確的個數(shù)有( 。
①函數(shù)f(x)=lg(2x-1)的值域為R;
②若(${\frac{2}{3}}$)a>(${\frac{2}{3}}$)b,則a<b;
③已知f(x)=$\left\{\begin{array}{l}{x^3}+1\;\;x>0\\ 2017x+1\;\;x≤0\end{array}$,則f[f(0)]=1;
④已知f(1)<f(2)<f(3)<…<f(2016),則f(x)在[1,2016]上是增函數(shù).
A.0個B.1個C.2 個D.3個Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,A、B、C所對的邊分別為a、b、c,若bcosA+acosB=c2,a=b=2,則△ABC的周長為( 。
A.7.5B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若規(guī)定集合M={a1,a2,…,an}(n∈N*)的子集{a${\;}_{{i}_{1}}$,a${\;}_{{i}_{2}}$,…a${\;}_{{i}_{m}}$}(m∈N*)為M的第k個子集,其中k=2${\;}^{{i}_{1}-1}$+2${\;}^{{i}_{2}-1}$+…+2${\;}^{{i}_{n}-1}$,則M的第25個子集是{a1,a4,a5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知直線mx+y-1=0與直線x+(3-2m)y=0互相垂直,則實數(shù)m的值3.

查看答案和解析>>

同步練習冊答案