單價x(元) | 18 | 19 | 20 | 21 | 22 |
銷量y(冊) | 61 | 56 | 50 | 48 | 45 |
分析 1)計算平均數(shù),利用公式求出a,b,即可得出y對x的回歸直線方程;
(2)設獲得的利潤為z元,利用利潤=銷售收入-成本,建立函數(shù),利用配方法可求獲得的利潤最大.
解答 解:(1)∵$x=\frac{18+19+20+21+22}{5}=20,y=\frac{61+56+50+48+45}{5}=52$,
$s_y^2=\frac{1}{5}({{9^2}+{4^2}+{2^2}+{4^2}+{7^2}})=33.2$,
∵$\sum_{i=1}^5{({{x_i}-x})}({{y_i}-y})=-40,{\sum_{i=1}^5{({{x_i}-x})}^2}=10$,
∴$b=\frac{{\sum_{i=1}^5{({{x_i}-x})}({{y_i}-y})}}{{{{\sum_{i=1}^5{({{x_i}-x})}}^2}}}=-4,\widehata=y-\widehatbx=52+20×4=132$,
所以y對x的回歸直線方程為:$\widehaty=-4\widehatx+132$.
(2)獲得的利潤z=(x-14)y=-4x2+188x-1848,
∵二次函數(shù)z=-4x2+188x-1848的開口朝下,
∴當$x=\frac{188}{8}=23.5$時,z取最大值,
∴當單價應定為23.5元時,可獲得最大利潤.
點評 本題主要考查回歸分析,考查二次函數(shù),考查運算能力、應用意識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com