如圖,AB為圓O的直徑,P為圓O外一點(diǎn),過(guò)P點(diǎn)作PC⊥AB于C,交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn).
(Ⅰ)求證:∠P=∠ABE;
(Ⅱ)求證:CD2=CF•CP.
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:(Ⅰ)在Rt△ACP中,∠P=90°-∠PAB;在Rt△ABE中,∠ABE=90°-∠PAB,即可證明:∠P=∠ABE;
(Ⅱ)證明△BCF∽△PCA,即可證明CD2=CF•CP.
解答: 證明:(Ⅰ)∠AEB=∠ACP=90°,∴在Rt△ACP中,∠P=90°-∠PAB;
在Rt△ABE中,∠ABE=90°-∠PAB,∴∠P=∠ABE.….(5分)
(Ⅱ)在Rt△ADB中,CD2=AC•CB,由①得△BCF∽△PCA,∴
BC
PC
=
CF
AC

∴CD2=BC•AC=CF•CP,∴CD2=CF•CP.….10分
點(diǎn)評(píng):本題考查與圓有關(guān)的比例線段,考查三角形相似的判定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:(m2+1)x2-4x+1≥0(m∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,平面PBD⊥平面ABCD,AD=2,PD=2
5
,AB=PB=4,∠BAD=60°.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)E是側(cè)棱PC上一點(diǎn),記
PE
PC
=λ,當(dāng)PB⊥平面ADE時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinωx,
3
sinωx),
b
=(sinωx,sin(
π
2
+ωx)),(ω>0),f(x)=
a
b
-
1
2
且f(x)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)若f(α)=
4
5
π
3
≤a≤
7
12
π),求sin2α值;
(Ⅲ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=-
π
2
對(duì)稱,且方程g(x)-k=0在區(qū)間[-
3
2
π,-π]上有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知矩陣A=
a2
1b
有一個(gè)屬于特征值1的特征向量
α
=
2
-1

(Ⅰ)求矩陣A;
(Ⅱ)若矩陣B=
1-1
01
,求直線x+y+1=0先在矩陣A,再在矩陣B的對(duì)應(yīng)變換作用下的像的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且
3
c=2bsinC
(Ⅰ)試確定角B的大;
(Ⅱ)若△ABC為銳角三角形,b=
3
,求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin
x
2
cos
x
2
-cos2
x
2
+
1
2

(1)若x∈[0,
π
2
],且f(x)=
3
3
,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c+
3
a,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+y=1,求x3+y3+3xy的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,△ABC是邊長(zhǎng)為2的正三角形,SA=SB=SC=4,平面DEFH分別與三棱錐S-ABC的四條棱AB、BC、SC、SA交于D、E、F、H,若直線SB∥平面DEFH,直線AC∥平面DEFH,則平面DEFH與平面SAC所成的二面角(銳角)的余弦值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案