計算:cos
3
+sin
2
tan
13π
4
=
 
考點:運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:直接利用誘導(dǎo)公式化簡求解即可.
解答: 解:cos
3
+sin
2
tan
13π
4
=-cos
π
3
+sin
π
2
tan
π
4
=-
1
2
+1
=
1
2

故答案為:
1
2
點評:本題考查誘導(dǎo)公式化簡求值,特殊角的三角函數(shù),基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的極坐標(biāo)方程為3ρcosθ+4ρsinθ+3=0,則曲線C上到直線l的距離為2的點有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)
a+i
2i
的實部與虛部相等,則實數(shù)a=( 。
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若a>b,則3a>3b-1”的否命題為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|-1≤2x+1≤3},B={x|x(x-2)<0},則A∩B=(  )
A、{x|-1≤x<0}
B、{x|0<x≤1}
C、{x|0≤x≤2}
D、{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,短軸的一個端點為(0,1),直線l:y=kx-
1
3
與橢圓相交于不同的兩點A、B.
(1)若|AB|=
4
26
9
,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ax2+2x+1=0至少有一個負(fù)實根,則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
sin2(π+α)cos(
π
2
-α)+tan(2π-α)cos(-α)
-sin2(-α)+tan(-π+α)cot(α-π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如圖所示,則導(dǎo)函數(shù)y=f′(x)可能為(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊答案