已知點P(x,y)滿足,設(shè)A(2,0),則(O為坐標(biāo)原點)的最大值為   
【答案】分析:畫出不等式組的可行域,判斷出目標(biāo)函數(shù)的幾何意義,結(jié)合圖象得到最大值.
解答:解:畫出點P(x,y)滿足,可行域,
根據(jù)題意,
分析可得:
表示的是點P的縱坐標(biāo),
由圖知,可行域中最上面的點(1,)的縱坐標(biāo)最大,
故答案為:
點評:本題主要考查了向量的數(shù)量積、簡單的線性規(guī)劃,以及利用幾何意義求最值,巧妙識別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)滿足條件
x≥0
y≤x
2x+y+k≤0
(k為常數(shù)),若z=x+3y的最大值為8,則k=( 。
A、4B、-6C、6D、-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)滿足條件
x+y-3≤0
x-y-1≤0
x-1≥0
,點A(2,1),則|
OP
|•cos∠AOP的最大值為( 。
A、
4
5
5
B、
7
5
5
C、
9
5
5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)滿足
x≤1
y≤1
x+y-1≥0
,點Q在曲線y=
1
x
(x<0)
上運動,則|PQ|的最小值是(  )
A、
2
2
B、
2
C、
3
2
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x、y)滿足不等式組
x+y≥4
x≤4
y≤3
,則則x2+y2+2x+2y的最大值是
37
37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)已知點P(x,y)滿足
x-y+2≥0
2x+y-8≥0
x≤3
,則|
OP
|
(O是坐標(biāo)圓點)的最大值等于
34
34

查看答案和解析>>

同步練習(xí)冊答案