10.已知命題p:?x0∈R,$sin{x_0}<\frac{1}{2}{x_0}$,則¬p為?x∈R,sin x≥$\frac{1}{2}$x.

分析 根據(jù)已知中的原命題,結(jié)合特稱命題的否定方法,可得¬p.

解答 解:∵命題p:?x0∈R,$sin{x_0}<\frac{1}{2}{x_0}$,
∴命題¬p:?x∈R,sin x≥$\frac{1}{2}$x,
故答案為:?x∈R,sin x≥$\frac{1}{2}$x

點評 本題考查的知識點是特稱命題的否定,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.${(x-\frac{1}{{\root{3}{x}}})^{16}}$的展開式中常數(shù)項為1820.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列變形,是因式分解的是( 。
A.x2+3x-16=(x-2)(x+5)-6B.x2-16=(x+4)(x-4)
C.(x-1)2=x2-2x+1D.${x^2}+1=x(x+\frac{1}{x})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:函數(shù)f(x)=x2+2x+m的圖象與x軸沒有交點;命題q:m2-2m-3<0.若“p∨q”為真,“p∧q”為假.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC是銳角三角形,內(nèi)角A、B、C所對的邊分別是a、b、c,滿足${sin}^{2}A=sin(\frac{π}{3}+B)sin(\frac{π}{3}-B)+{sin}^{2}$B.
(Ⅰ)求角A的值;
(Ⅱ)若$\overrightarrow{AB}•\overrightarrow{AC}$=12,a=2$\sqrt{7}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A=|0,1,2,3|,$B=\left\{{x\left|{\frac{x-3}{x-1}≤0}\right.}\right\}$,則A∩B=( 。
A.{1,2}B.{1,2,3}C.{2.3}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)4,m,1構(gòu)成一個等比數(shù)列,則曲線$\frac{x^2}{m}+{y^2}=1$的離心率為$\frac{{\sqrt{2}}}{2}$或$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如果拋物線y2=ax的準線是直線x=-1,那么它的焦點坐標為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1上一點P到焦點F1的距離為6,則點P到另一焦點F2的距離是16.

查看答案和解析>>

同步練習(xí)冊答案