不等式|x-2|-|x-1|>0的解集為( )
A.(-∞,
B.(-∞,-
C.(,+∞)
D.(-,+∞)
【答案】分析:不等式可化為|x-2|>|x-1|,平方化簡可得 2x<3,與哦刺球的x的范圍,即為所求.
解答:解:不等式|x-2|-|x-1|>0即|x-2|>|x-1|,平方化簡可得 2x<3,解得x<,
故選A.
點評:本題主要考查絕對值不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-2|+|x+3|>a,對于x∈R均成立,那么實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式|x-2|+|x-3|<a
(Ⅰ)當(dāng)a=2時,解不等式;
(Ⅱ)如果不等式的解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x-2|+|x|≥a-
3a
對于任意實數(shù)x恒成立,則實數(shù)a的取值范圍是
(-∞,-1]∪(0,3]
(-∞,-1]∪(0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•和平區(qū)二模)若關(guān)于x的不等式|x+2|+|x-3|≤|a-1|存在實數(shù)解,則實數(shù)a的取值范圍是.
(-∞,-4]∪[6,+∞)
(-∞,-4]∪[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•肇慶一模)不等式|x+2|+|x|≥4的解集是
(-∞,-3]∪[1,+∞)
(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案