如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點(diǎn)O為球心、BD為直徑的球面交PD于點(diǎn)M.
⑴求證:平面ABM⊥平面PCD;
⑵求直線PC與平面ABM所成角的正切值;
⑶求點(diǎn)O到平面ABM的距離.
見解析
【解析】(I)證明:即可.
(2)找出線面角是解題的關(guān)鍵,而找線面角的關(guān)鍵是平面ABM的垂線.取PC的中點(diǎn)N,易證:,所以∠PNM 就是PC與平面ABM所成角..
(3)點(diǎn)O到平面ABM的距離是點(diǎn)C到平面ABM的距離的一半,然后轉(zhuǎn)化為求點(diǎn)C到平面ABM的距離即可,而點(diǎn)C到平面ABM的距離等于點(diǎn)P到平面ABM的距離,所以所求的距離等于PM的長度的一半.
證明:(1)證明:
平面ABM⊥平面PCD
(2)平面ABM交PC于點(diǎn)N,則MN//CP
由(1)知PC與平面ABM所成角即為∠PNM=
則
(3)點(diǎn)O到平面ABM的距離即為點(diǎn)D到平面ABM的距離的一半
由上述知.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com