已知書架中甲層有英語書2本和數(shù)學(xué)書3本,乙層有英語書1本和數(shù)學(xué)書4本.現(xiàn)從甲、乙兩層中各取兩本書.
(1)求取出的4本書都是數(shù)學(xué)書的概率.
(2)求取出的4本書中恰好有1本是英語書的概率.
(3)設(shè)ξ為取出的4本書中英語書本數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.
【答案】分析:(1)設(shè)“從甲層取出的2本書均為數(shù)學(xué)書”的事件為A,“從乙層取出的2本書均為數(shù)學(xué)書”的事件為B,由于A、B相互獨(dú)立,利用獨(dú)立事件的概率公式可求;
(2)設(shè)“從甲層取出的2本書均為數(shù)學(xué)書,從乙層取出的2本書中,1本是英語,1本是數(shù)學(xué)”的事件為C,“從甲層取出的2本書中,1本是英語,1本是數(shù)學(xué),從乙層取出的2本書中均為數(shù)學(xué)”的事件為D,由于C,D互斥,利用互斥事件的概率公式可求;
(3)確定ξ可能的取值,求出相應(yīng)的概率,可得ξ的分布列和數(shù)學(xué)期望Eξ.
解答:解:(1)設(shè)“從甲層取出的2本書均為數(shù)學(xué)書”的事件為A,“從乙層取出的2本書均為數(shù)學(xué)書”的事件為B,由于A、B相互獨(dú)立,記“取出的4本書都是數(shù)學(xué)書的概率”為P1
∴P1=P(AB)=P(A)P(B)==                           (3分)
(2)設(shè)“從甲層取出的2本書均為數(shù)學(xué)書,從乙層取出的2本書中,1本是英語,1本是數(shù)學(xué)”的事件為C,“從甲層取出的2本書中,1本是英語,1本是數(shù)學(xué),從乙層取出的2本書中均為數(shù)學(xué)”的事件為D,由于C,D互斥,記“取出的4本書中恰好有1本是英語書的概率”為P2
2=P(C+D)=P(C)+P(D)==          (6分)
(3)由題意,ξ可能的取值為0,1,2,3
P(ξ=0)=,P(ξ=1)=,P(ξ=2)==
P(ξ=3)==                                         (9分)
所以ξ的分布列為
ξ123
P
(10分)
Eξ=0×+1×+2×+3×=1.2                         (12分)
點(diǎn)評(píng):本題考查概率的計(jì)算,考查離散型隨機(jī)變量的分布列與期望,確定變量的取值,求出相應(yīng)的概率是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)已知書架中甲層有英語書2本和數(shù)學(xué)書3本,乙層有英語書1本和數(shù)學(xué)書4本.現(xiàn)從甲、乙兩層中各取兩本書.
(1)求取出的4本書都是數(shù)學(xué)書的概率.
(2)求取出的4本書中恰好有1本是英語書的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•眉山二模)已知書架中甲層有英語書2本和數(shù)學(xué)書3本,乙層有英語書1本和數(shù)學(xué)書4本.現(xiàn)從甲、乙兩層中各取兩本書.
(1)求取出的4本書都是數(shù)學(xué)書的概率.
(2)求取出的4本書中恰好有1本是英語書的概率.
(3)設(shè)ξ為取出的4本書中英語書本數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知書架中甲層有英語書2本和數(shù)學(xué)書3本,乙層有英語書1本和數(shù)學(xué)書4本.現(xiàn)從甲、乙兩層中各取兩本書.
(1)求取出的4本書都是數(shù)學(xué)書的概率.
(2)求取出的4本書中恰好有1本是英語書的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省眉山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知書架中甲層有英語書2本和數(shù)學(xué)書3本,乙層有英語書1本和數(shù)學(xué)書4本.現(xiàn)從甲、乙兩層中各取兩本書.
(1)求取出的4本書都是數(shù)學(xué)書的概率.
(2)求取出的4本書中恰好有1本是英語書的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案