【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過點(diǎn).

(1)求雙曲線的方程;

(2)若點(diǎn)M(3,m)在雙曲線上,試求的值.

【答案】1x2y26.20

【解析】

(1)由題意可設(shè)雙曲線方程為x2y2λ(λ≠0),將點(diǎn)代入求出參數(shù)λ的值,從而求出雙曲線方程.
(2)先求出的解析式,把點(diǎn)M(3m)代入雙曲線,可得到答案.

解:(1) ∵e,∴可設(shè)雙曲線的方程為x2y2λ(λ≠0).

∵雙曲線過點(diǎn),∴1610λ,即λ6.

∴雙曲線的方程為x2y26.

(2)(1)可知,ab,

c2,F1(20),F2(20),

從而

由于點(diǎn)M(3,m)在雙曲線上,∴9m26,即m230,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的頂點(diǎn),邊上的中線所在的直線方程是AC邊上的高所在的直線方程是

求:(1AC邊所在的直線方程;

2AB邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓的左右焦點(diǎn),焦距為6,橢圓上存在點(diǎn)使得,且的面積為9.

(Ⅰ)求的方程;

(Ⅱ)過的直線與橢圓相交于,兩點(diǎn),直線軸不重合,軸上一點(diǎn),且,求點(diǎn)縱坐標(biāo)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中,底面,,,的中點(diǎn).

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是函數(shù)的圖象上的一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足:.

1)求數(shù)列,的通項(xiàng)公式;

2)若數(shù)列的通項(xiàng),求數(shù)列的前項(xiàng)和;

3)若數(shù)列的前項(xiàng)和為,是否存在最大的整數(shù),使得對(duì)任意的正整數(shù)n,均有總成立?若成立,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和橢圓. 直線與橢圓交于不同的兩點(diǎn).

(Ⅰ) 求橢圓的離心率;

(Ⅱ) 當(dāng)時(shí),求的面積;

(Ⅲ)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)中點(diǎn)時(shí),求的值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種細(xì)菌的適宜生長(zhǎng)溫度為,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/

12

14

16

18

20

22

24

繁殖數(shù)量/個(gè)

20

25

33

27

51

112

194

對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中.

(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類型(結(jié)果精確到0.1);

(2)當(dāng)溫度為時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?

參考公式:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:,.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點(diǎn)在以為直徑的圓上,,,平面平面.

1)證明:平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓經(jīng)過點(diǎn),且圓心在直線軸上.

(Ⅰ)求圓的方程;

(Ⅱ)過點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn).當(dāng)時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案