(1)若平面PAB∩平面PCD=l,試判斷直線l與平面ABCD的關(guān)系,并加以證明;
(2)求平面PAB與平面PCD所成二面角的大小;
(3)當(dāng)AD為多長時,點D到平面PCE的距離為2?
(文)在正四棱柱ABCD—A1B1C1D1中,BB1=2AB=4,E、F分別是棱AB與BC的中點.
(1)求二面角EFB1B的平面角的正切值.
(2)在棱DD1上能否找到一點M,使BM⊥平面B1EF?若能,試確定M的位置;若不能,請說明理由.
解:(理)(1)l與面ABCD平行.證明:∵DC∥AB,DC面PAB,∴DC∥面PAB.∵DC面PDC,面PAB∩面PCD=l,∴l(xiāng)∥DC.又l面ABCD,DC面ABCD,∴l(xiāng)∥面ABCD.
(2)由(1),可知面PAB∩面PCD=l.∵面PAD⊥面ABCD,ABCD為矩形,∴AB⊥面PAD.∵l∥DC∥AB,∴l(xiāng)⊥面PAD.∴l(xiāng)⊥AD.同理,l⊥AP.∴∠PAD為面PAB與面PDC所成二面角的平面角.∵△PAD是正三角形,∴面PAB與面PDC所成二面角大小為60°.
(3)設(shè)AD的中點為F,且AD=a,則PF⊥AD.∴∠PCF=30°.∴PF=a.∴CF=a,CD=a.
由VD—PEC=VP—DEC,得S△DEC·PF=S△PEC·2.∴·a·a·=2·S△PEC,①
易求PE=EC=a,PC=a.∴S△PCE=|PC|.②
由①②,得a=.
(文)(1)過B點作BG⊥B1F,垂足為G點,連結(jié)EG.∵EB⊥面BB1C1C,根據(jù)三垂線定理,知∠EGB即為所求二面角的平面角.
EB=AB=1,BG=.∴tan∠EGB=,二面角EFB1B的平面角的正切值為.
(2)設(shè)存在M點.
EF∩DB=H.已知BD=,BH=.∵EF⊥面BB1D1D,∴EF⊥B1H,EF⊥BM.在如圖所示的截面中,BM⊥B1H,
∴tanθ=.∴DM=,即存在點M,且D1M=或DM=.
科目:高中數(shù)學(xué) 來源: 題型:
(09年臨沭縣模塊考試?yán)恚?2分)
如圖,在四棱錐S―ABCD中,底面ABCD是邊長為1的菱形,∠ABC=,SA⊥底面
ABCD,SA=2,M 的為SA的中點,N在線段BC上。
(Ⅰ)當(dāng)為何值時,MN∥平面SCD;(說明理由)。
(Ⅱ)求MD和平面SCD所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年西工大附中理)如圖,在四棱錐中,底面是一直角梯形,,,,,且平面,與底面成角.
(Ⅰ) 求證:平面平面;
(Ⅱ) 求二面角的大;
(Ⅲ) 若,為垂足,求異面直線與所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年重慶卷理)(13分)
如圖,在四棱錐中,底面ABCD,為直角,,E、F分別為、中點。
(I)試證:平面;
(II)高,且二面角 的平面角大小,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年重點中學(xué)模擬理) (12分)如圖,在四棱錐P―ABCD中,PA⊥平面ABCD,四邊形ABCD為直角梯形,AD//BC且AD>BC,∠DAB=∠ABC=90°,PA=,AB=BC=1。M為PC的中點。
(1)求二面角M―AD―C的大;
(2)如果∠AMD=90°,求線段AD的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(04年天津卷理)(12分)
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點,作交PB于點F。
(I)證明 平面;
(II)證明平面EFD;
(III)求二面角的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com