12.已知f(x)=sinx-cosx+1,x∈R.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的遞增區(qū)間.

分析 (1)將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期,結(jié)合三角函數(shù)的圖象和性質(zhì)可得最大值,
(2)將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;

解答 解:(1)f(x)=sinx-cosx+1,x∈R.
化簡得:f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+1 
函數(shù)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{1}=2π$.
∵sin(x-$\frac{π}{4}$)的最大值為1,
∴f(x)=$\sqrt{2}$sin(x-$\frac{π}{4}$)+1的最大值為$\sqrt{2}+1$,
即ymax=$\sqrt{2}+1$.
   (2)三角函數(shù)的圖象和性質(zhì)可得:(x$-\frac{π}{4}$)∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ]是單調(diào)遞增區(qū)間,即-$\frac{π}{2}$+2kπ≤x$-\frac{π}{4}$≤$\frac{π}{2}$+2kπ,
解得:-$\frac{π}{4}$+2kπ≤x≤$\frac{3π}{4}$+2kπ,
故得x∈[-$\frac{π}{4}$+2kπ,$\frac{3π}{4}$+2kπ],k∈Z,是函數(shù)f(x)單調(diào)遞增區(qū)間,

點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,PA=AB=1,BC=2,PA⊥底面ABCD
(1)求PB與AC所成角的大小
(2)求A點(diǎn)到平面PBC的距離h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}\right.$,θ為參數(shù),以直角坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若M(2,0),N為曲線C上的任意一點(diǎn),求線段MN中點(diǎn)的軌跡的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=xe-x,x∈[0,4]的最小值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,由若干個(gè)點(diǎn)組成形如三角形的圖形,每條邊(包括兩個(gè)端點(diǎn))有n(n>1,n∈N)個(gè)點(diǎn),每個(gè)圖形總的點(diǎn)數(shù)記為an,則a6=15;$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2015}}{a_{2016}}}}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.焦點(diǎn)為(2,0)的拋物線的標(biāo)準(zhǔn)方程為( 。
A.y2=16xB.y2=8xC.y2=4xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上不同于長軸端點(diǎn)的任意一點(diǎn),則△PF1F2內(nèi)切圓半徑的最大值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線y2=2px,(p>0)上存在兩點(diǎn)關(guān)于直線y=x-1對稱,則p的取值范圍是0<p<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=sinx(x∈[0,π])圖象上兩個(gè)點(diǎn)A(x1,y1),B(x2,y2)(x1<x2)滿足AB∥x軸,點(diǎn)C的坐標(biāo)為(π,0),則四邊形OABC的面積取最大值時(shí),x1+tanx1=π.

查看答案和解析>>

同步練習(xí)冊答案