已知橢圓的左頂點為A1,右焦點為F2,點P為該橢圓上一動點,則當取最小值時,的值為(   )

A、        B、3            C、            D、

 

【答案】

B

【解析】解:因為橢圓的左頂點為A1,右焦點為F2,點P為該橢圓上一動點,則當取最小值時,夾角為180度,兩邊平方可知值為3,選B

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年江蘇省淮安市盱眙縣新馬中學高三(上)第八周內(nèi)測數(shù)學試卷(文科)(解析版) 題型:填空題

已知橢圓的左頂點為A,上頂點為B,右焦點為F.設線段AB的中點為M,若,則該橢圓離心率的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省宜昌一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:填空題

如圖,已知橢圓的左頂點為A,左焦點為F,上頂點為B,若∠BAO+∠BFO=90°,則該橢圓的離心率是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高級中學等三校高二(上)期末數(shù)學試卷(文科)(解析版) 題型:填空題

如圖,已知橢圓的左頂點為A,左焦點為F,上頂點為B,若∠BAO+∠BFO=90°,則該橢圓的離心率是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市海門中學高三(上)開學檢測數(shù)學試卷(解析版) 題型:解答題

已知橢圓的左頂點為A,左、右焦點分別為F1,F(xiàn)2,且圓C:過A,F(xiàn)2兩點.
(1)求橢圓標準的方程;
(2)設直線PF2的傾斜角為α,直線PF1的傾斜角為β,當β-α=時,證明:點P在一定圓上;
(3)設橢圓的上頂點為Q,證明:PQ=PF1+PF2

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省棗莊市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓的左頂點為A,右焦點為F,且過點(1,),橢圓C的焦點與曲線的焦點重合.
(1)求橢圓C的方程;
(2)過點F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點,點M、N的縱坐標分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點?若存在,求出定點的坐標,并證明你的結(jié)論;若不存在,請說明理由.
(3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

同步練習冊答案