精英家教網 > 高中數學 > 題目詳情
中心在原點,對稱軸在坐標軸,長軸是短軸的5倍,且過點P(7,2)的橢圓方程是_______

 

答案:
解析:

 

 


提示:

a=5b,再由已知點得到關于ab的另一個方程,由于焦點坐標不確定在哪個軸上,所以有兩種情況。

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知直線l與x軸正方向、y軸正方向交于A,B兩點,M,N是線段AB的三等分點,橢圓C經過M,N兩點.
(1)若直線l的方程為2x+y-6=0,求橢圓C的標準方程;
(2)若橢圓的中心在原點,對稱軸在坐標軸上,其離心率e∈(0,
12
),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泉州模擬)如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓C與橢圓Γ:
x2
8
+
y2
4
=1
相似,且橢圓C的一個短軸端點是拋物線y=
1
4
x2
的焦點.
(Ⅰ)試求橢圓C的標準方程;
(Ⅱ)設橢圓E的中心在原點,對稱軸在坐標軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點,且與橢圓E交于H,K兩點.若線段AB與線段HK的中點重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數學 來源: 題型:

若橢圓的中心在原點,對稱軸在坐標軸上,且離心率為,一條準線的方程為,求橢圓的標準方程。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年甘肅省高三上學期期末考試理科數學試卷(解析版) 題型:解答題

(本小題滿分12分)

如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓相似,且橢圓的一個短軸端點是拋物線的焦點.

(Ⅰ)試求橢圓的標準方程;

(Ⅱ)設橢圓的中心在原點,對稱軸在坐標軸上,直線與橢圓交于兩點,且與橢圓交于兩點.若線段與線段的中點重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

 

查看答案和解析>>

科目:高中數學 來源:2008-2009學年江蘇省揚州市高二(上)期末數學試卷(解析版) 題型:解答題

已知直線l與x軸正方向、y軸正方向交于A,B兩點,M,N是線段AB的三等分點,橢圓C經過M,N兩點.
(1)若直線l的方程為2x+y-6=0,求橢圓C的標準方程;
(2)若橢圓的中心在原點,對稱軸在坐標軸上,其離心率e∈(0,),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案