精英家教網(wǎng)如圖,在三棱錐P-ABC中,△ABC是正三角形,且∠PCA=∠PCB.
(Ⅰ)求證:PC⊥AB;
(Ⅱ)設(shè)正△ABC的中心為O,△PAB的重心為G,求證:OG∥平面PAC.
分析:(Ⅰ)因為AC=BC,且∠PCA=∠PCB,PC=PC所以△PAC≌△PBC,所以AC=BC,PA=PB則有CD⊥AB,PD⊥AB,CD,PD?平面PCD
所以AB⊥平面PCD則可得PC⊥AB.
(2)由題意得O是正△ABC的中心,G是△PAB的重心所以
PG
GD
=
CO
OD
=
2
1
所以O(shè)G∥PC可得OG∥平面PAC.
解答:證明:(Ⅰ)在△PAC與△PBC中,
∵AC=BC,
∴∠PCA=∠PCB,PC=PC
∴△PAC≌△PBC,
∴PA=PB,
設(shè)AB中點位D,連接CD,PD.
∵AC=BC,PA=PB,
∴CD⊥AB,PD⊥AB,CD,PD?平面PCD,
∴AB⊥平面PCD
∴PC⊥AB
(Ⅱ)∵O是正△ABC的中心,G是△PAB的重心,
∴點O,G分別在直線PD,CD上,且
PG
GD
=
CO
OD
=
2
1

∴OG∥PC
因為OG?平面PAC,PC?平面PAC,
所以O(shè)G∥平面PAC
點評:證明線面垂直時是以相似為橋梁證明線段相等,再利用已知直線與面內(nèi)的兩條相交直線垂直即可證明,證明線面平行時重心的比例關(guān)系是難點,根據(jù)這個關(guān)系得到線線平行進而得到線面平行.(題中考查的也是學生常忽略的地方)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3.PB=2,PC=1.設(shè)M是底面ABC內(nèi)一點,定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,則正實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE‖平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一繩子從A點繞三棱錐側(cè)面一圈回到點A的最短距離是
3
,則PA=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,點D,E分別在棱
PB,PC上,且BC∥平面ADE
(I)求證:DE⊥平面PAC;
(Ⅱ)當二面角A-DE-P為直二面角時,求多面體ABCED與PAED的體積比.

查看答案和解析>>

同步練習冊答案