如圖,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點D是AB的中點.
(1)求證:AC1∥平面CDB1
(2)求證:AC⊥BC1;
(3)求直線B1D與平面CBB1C1所成角的正玄值.
分析:(1)利用線面平行的判定定理即可證明;
(2)利用線面垂直的性質(zhì)定理即可證明;
(3)先作出線面角,進(jìn)而求出即可.
解答:證明:(1)連接BC1、CB1,相較于點O,則BO=OC1
又∵點D是AB的中點.∴OD∥AC1
∵OD?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1
(2)∵AC=3,AB=5,BC=4,
∴AB2=AC2+CB2,
∴∠ACB=90°,∴AC⊥CB;
∵直三棱柱ABC-A1B1C1,∴CC1⊥AC,
又∵CC1∩CB=C,
∴AC⊥平面CBB1C1,
∴AC⊥BC1
(3)取CB的中點E,連接DE、EB1
則DE∥AC,DE=
1
2
AC=
3
2

∵AC⊥平面CBB1C1,
∴DE⊥平面CBB1C1
∴∠DB1E是直線DB1與平面CBB1C1所成的角.
在Rt△BB1E中,B1E=
22+42
=2
5

DB1=
(
3
2
)2+(2
5
)2
=
89
2

∴sin∠DB1E=
DE
DB1
=
3
89
89
點評:熟練掌握線面平行、垂直的判定定理與性質(zhì)定理和線面角的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案