如圖,A,B是圓O上兩點(diǎn),且OA⊥OB,OA=1,C為OA的中點(diǎn),連接BC并延長(zhǎng)交圓O于點(diǎn)D,則CD=
 
考點(diǎn):與圓有關(guān)的比例線段
專題:推理和證明
分析:由已知得OB=1,OC=
1
2
,BC=
1+
1
4
=
5
2
,延長(zhǎng)AO,交圓O于點(diǎn)E,由相交弦定理得:AC•CE=BC•CD,由此能求出CD.
解答: 解:∵A,B是圓O上兩點(diǎn),且OA⊥OB,OA=1,C為OA的中點(diǎn),
OB=1,OC=
1
2
,BC=
1+
1
4
=
5
2
,
延長(zhǎng)AO,交圓O于點(diǎn)E,
由相交弦定理得:AC•CE=BC•CD,
CD=
AC×CE
BC
=
1
2
×
3
2
5
2
=
3
5
10

故答案為:
3
5
10
點(diǎn)評(píng):本題考查與圓有關(guān)的線段長(zhǎng)的求法,是中檔題,解題時(shí)要注意圓的性質(zhì)和相交弦定理的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

牛奶保鮮時(shí)間因儲(chǔ)藏時(shí)溫度的不同而不同,假定保鮮時(shí)間與儲(chǔ)藏溫度間的關(guān)系為指數(shù)型函數(shù),若牛奶放在0℃的冰箱中,保鮮時(shí)間約是192h,而在22℃的廚房中則約是42h
(1)寫(xiě)出保鮮時(shí)間y(單位:h)關(guān)于儲(chǔ)藏溫度x(單位:℃)的函數(shù)解析式
(2)利用(1)中結(jié)論,指出溫度在30℃和16℃的保鮮時(shí)間(精確到1h)
(3)運(yùn)用上面的數(shù)據(jù),作此函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某超市有4個(gè)不同的結(jié)賬出口,有3名同學(xué)在此超市買了東西后準(zhǔn)備結(jié)賬
(1)不同的選擇結(jié)賬出口方案共有多少種?
(2)如果他們發(fā)現(xiàn)所有結(jié)賬出口都空閑,于是選了兩個(gè)出口同時(shí)付款,則不同的選擇方案共有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
2
0
(sin3xcosx)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x-1
的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓內(nèi)接四邊形ABCD的邊BC與AD的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F在BA的延長(zhǎng)線上.
(Ⅰ)若
EC
EB
=
1
3
,
ED
EA
=
1
2
,求
DC
AB
的值;
(Ⅱ)若EF∥CD,證明:EF2=FA•FB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)l、m是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題為真命題的是( 。
A、若m∥l,m∥α,則l∥α
B、若m⊥α,l⊥m,則l∥α
C、若α∥β,l⊥α,m∥β,則l⊥m
D、若m?α,m∥β,l?β,l∥α,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是公差d不為零的等差數(shù)列,其前n項(xiàng)和為Sn,若記數(shù)據(jù)a1,a2,a3,…,a2015的方差為λ1,數(shù)據(jù)
S1
1
,
S2
2
,
S3
3
,…,
S2015
2015
的方差為λ2,則( 。
A、λ1>λ2
B、λ12
C、λ1<λ2
D、與的大小關(guān)系與公差的正負(fù)有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A=
π
3
,AC=4,BC=2
3
,則ABC的面積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案