已知△ABC的三邊長(zhǎng)分別為a-2,a,a+2,且它的最大角的正弦值為,則這個(gè)三角形的面積是

[  ]
A.

B.

C.

D.

答案:B
解析:

  先判斷出a+2所對(duì)角最大,設(shè)為α,則sinα=

  ∴cosα=±

  當(dāng)cosα=時(shí),由(a+2)2=a2+(a-2)2-2a(a-2)·cosα,解得a=0,不合題意.

  當(dāng)cosα=-時(shí),由(a+2)2=a2+(a-2)2-2a(a-2)·cosα,解得a=5或a=0(舍去).

  ∴S=(a-2)·a·sinα=×3×5×


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)分別為a,b,c,其面積為S,則△ABC的內(nèi)切圓的半徑r=
2Sa+b+c
.這是一道平面幾何題,請(qǐng)用類(lèi)比推理方法,猜測(cè)對(duì)空間四面體ABCD存在什么類(lèi)似結(jié)論?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)a,b,c滿(mǎn)足b+2c≤3a,c+2a≤3b,則
ba
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)為a、b、c,滿(mǎn)足直線ax+by+c=0與圓x2+y2=1相離,則△ABC是( 。
A、銳角三角形B、直角三角形C、鈍角三角形D、以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)為三個(gè)連續(xù)的正整數(shù),且最大角為鈍角,則最長(zhǎng)邊長(zhǎng)為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三邊長(zhǎng)AC=3,BC=4,AB=5,P為AB邊上任意一點(diǎn),則
CP
•(
BA
-
BC
)
的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案