若復(fù)數(shù)z滿足方程Z2+2=0,則z=(  )
A、±
2
i
B、±
2
C、-
2
i
D、-
2
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:設(shè)z=a+bi(a,b∈R),由于復(fù)數(shù)z滿足方程Z2+2=0,可得a2-b2+2+2abi=0,利用復(fù)數(shù)相等即可得出.
解答: 解:設(shè)z=a+bi(a,b∈R),∵復(fù)數(shù)z滿足方程Z2+2=0,∴(a+bi)2+2=0,∴a2-b2+2+2abi=0,
a2-b2+2=0
2ab=0
,解得
a=0
b=±
2
,
∴z=±
2
i

故選:A.
點評:本題考查了復(fù)數(shù)的運算法則、復(fù)數(shù)相等,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(2x+3)+2(a>0,且a≠1)的圖象恒過點( 。
A、(1,2)
B、(-1,2)
C、(1,3)
D、(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞減,且f(3)=0.若f(m+1)>0,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(
π
2
+θ)=
1
7
,則cos(π-θ)等于( 。
A、-
1
7
B、
1
7
C、-
6
7
D、
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(-α)=
2
2
3
,α∈(-
π
2
,0),則tanα等于(  )
A、
2
4
B、-
2
4
C、2
2
D、-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知集合 A={0,1,2,3},B={2,3,4,5},則 A∪B中元素的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線bx-ay+c=0(a>0)是曲線y=ln
1
x
在x=3處的切線,f(x)=a•2x+b•3x,若f(x+1)>f(x),則x的取值范圍是( 。
A、(-2,1)
B、(1,+∞)
C、(-∞,1)
D、(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,-4),
b
=(-1,3),
c
=(6,5),
p
=
a
+2
b
-
c
,則以
a
,
b
為基底,求
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,1,x),
b
=(1,2,1),
c
=(1,1,1),滿足條件(
c
-
a
)•(2
b
)=-2,則x的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案