8.已知集合U={1,2,3,4,5,6,7},M={x|x2-6x+5≤0,x∈Z},則∁UM={6,7}.

分析 解不等式化簡集合M,根據(jù)補(bǔ)集的定義寫出運(yùn)算結(jié)果即可.

解答 解:集合U={1,2,3,4,5,6,7},
M={x|x2-6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z}={1,2,3,4,5},
則∁UM={6,7}.
故答案為:{6,7}.

點(diǎn)評 本題考查了集合的運(yùn)算與解不等式的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$y=\sqrt{-{x^2}-2x+3}$的增區(qū)間是(  )
A.[-3,-1]B.[-1,1]C.(-∞,-3]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要得到函數(shù)f(x)=sin2x的圖象,只需將函數(shù)g(x)=cos2x的圖象(  )
A.向左平移$\frac{π}{2}$個(gè)周期B.向右平移$\frac{π}{2}$個(gè)周期
C.向左平移$\frac{π}{4}$個(gè)周期D.向右平移$\frac{π}{4}$個(gè)周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是定義R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=2x,則f(log4$\frac{1}{9}$)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲線在點(diǎn)A與點(diǎn)B之間的“彎曲度”.設(shè)曲線y=ex上不同的兩點(diǎn)A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<3恒成立,則實(shí)數(shù)t的取值范圍是( 。
A.(-∞,3]B.(-∞,2]C.(-∞,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xOy中,過點(diǎn)M(1,0)的直線l與圓x2+y2=5交于A,B兩點(diǎn),其中A點(diǎn)在第一象限,且$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則直線l的方程為x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x,y滿足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$則目標(biāo)函數(shù)z=$\frac{x+y+3}{x+2}$的最大值為( 。
A.$\frac{5}{2}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱錐ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2$\sqrt{3}$.
(1)求證:AB1⊥CC1;
(2)若AB1=3$\sqrt{2}$,D1為線段A1C1上的點(diǎn),且三棱錐C-B1C1D1的體積為$\sqrt{3}$,求$\frac{{A}_{1}{D}_{1}}{{C}_{1}{D}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}中,a1>1,前n項(xiàng)和為Sn,若$\lim_{x→∞}{S_n}=\frac{1}{a_1}$,那么a1的取值范圍是( 。
A.(1,+∞)B.(1,2)C.$(1\;,\;\;\sqrt{3})$D.$(1\;,\;\;\sqrt{2})$

查看答案和解析>>

同步練習(xí)冊答案