已知函數(shù)f(x)=
1
3
x3-
a
2
x2-2a2x+1   (a>0)

(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)的圖象與直線y=0恰有三個(gè)交點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)已知不等式f'(x)<x2-x+1對(duì)任意a∈(1,+∞)都成立,求實(shí)數(shù)x的取值范圍.
(1)∵f′(x)=x2-ax-2a2,令f′(x)=x2-ax-2a2=0,則  x=-a或x=2a
f′(x)=x2-ax-2a2>0時(shí),x<-a或x>2a
x=-a時(shí),f(x)取得極大值f(-a)=
7
6
a3+1
,x=2a時(shí),f(x)取極小值
f(2a)=-
10
3
a3+1

(2)要使函數(shù)y=f(x)的圖象與值線y=0恰有三個(gè)交點(diǎn),則函數(shù)y=f(x)的極大值大于零,極小值小于零,由(1)的極值可得
7
6
a3 +1>0
-
10
3
a3+1<0
解之得a>
3
3
10
=
3300
10

(3)要使f′(x)<x2-x+1對(duì)任意a∈(1,+∞)都成立
即x2-ax-2a2<x2-x+1,
(1-a)x<2a2+1
∵a∈(1,+∞)∴1-a<0
x>
2a2+1
1-a
對(duì)任意a∈(1,+∞)都成立,則x大于
2a2+1
1-a
的最大值
2a2+1
1-a
=-
2(a-1)2+4(a-1)+3
a-1
=-[2(a-1)+
3
a-1
+4]

由a∈(1,+∞),a-1>0,∴2(a-1)+
3
a-1
≥2
6
,
當(dāng)且僅當(dāng)a=1+
6
2
時(shí)取等號(hào),∴
2a2+1
1-a
≤-(2
6
+4)

x>(
2a2+1
1-a
)max=-(4+2
6
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案