如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDCE、F分別是AB,PB的中點(diǎn).

(Ⅰ)求證:EFCD;

(Ⅱ)求DB與平面DEF所成角的正弦值;

(Ⅲ)在平面PAD內(nèi)是否存在一點(diǎn)G,使G在平面PCB上的射影為△PCB的外心,若存在,試確定點(diǎn)G的位置;若不存在,說明理由.

答案:
解析:

  解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

  設(shè)ADa,則D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),E(a,,0),

  P(0,0,a),F(,,).  2分

  (1)

    4分

  (2)設(shè)平面DEF的法向量為

  

  得

  取x=1,則y=-2,z=1.

    6分

  

  設(shè)DB與平面DEF所成角為  8分

  (3)假設(shè)存在點(diǎn)G滿足題意

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/1360/0018/da3699f975a47c5a9103af5d58e01bef/C/Image64.gif" width=254 height=22>

  

  ∴存在點(diǎn)G,其坐標(biāo)為(,0,0),即G點(diǎn)為AD的中點(diǎn).  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,且PD=a,PA=PC=
2
a
,
(1)求證:PD⊥平面ABCD;(2)求二面角A-PB-D的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=
90°,側(cè)面PAD⊥底面ABCD.若PA=AB=BC=
12
AD.
(Ⅰ)求證:CD⊥平面PAC;
(Ⅱ)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置并證明,若不存在,請說明理由;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為等腰梯形,AB∥CD,AD=BC=2,對角線AC⊥BD于O,∠DAO=60°,且PO⊥平面ABCD,直線PA與底面ABCD所成的角為60°,M為PD上的一點(diǎn).
(Ⅰ)證明:PD⊥AC;
(Ⅱ)求二面角A-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PB⊥平面EFD;
(2)求二面角C-PB-D的大。
(3)求點(diǎn)A到面EBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求證:EF⊥CD;
(3)設(shè)PD=AD=a,求三棱錐B-EFC的體積.

查看答案和解析>>

同步練習(xí)冊答案