設(shè)函數(shù)(其中xÎ [t,t+1],tÎ R)的最小值為g(t),求g(t)的表達式.
科目:高中數(shù)學(xué) 來源:浙江省杭師大附中2012屆高三上學(xué)期第二次月考數(shù)學(xué)理科試題 題型:013
設(shè)函數(shù)其中[x]表示不超過x的最大整數(shù),如[-1,2]=-2,[1.2]=1,[1]=1,若直線y=kx+k(k>0)與函數(shù)y=f(x)的圖象恰有三個不同的交點,則k的取值范圍是
(,]
(0,]
[,]
[,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省深圳高級中學(xué)2011屆高三高考前最后模擬數(shù)學(xué)文科試卷 題型:013
設(shè)函數(shù)其中[x]表示不超過x的最大整數(shù),如[-1,2]=-2,[1.2]=1,[1]=1,若直線y=kx+k(k>0)與函數(shù)y=f(x)的圖象恰有三個不同的交點,則k的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省師大附中2012屆高三上學(xué)期期中考試數(shù)學(xué)理科試題(人教版) 題型:044
已知函數(shù),f2(x)=()|x-m|其中m∈R且m≠0.
(Ⅰ)討論函數(shù)f1(x)的單調(diào)性;
(Ⅱ)若m<-2,求函數(shù)f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
(Ⅲ)設(shè)函數(shù)當(dāng)x≥2時,若對于任意的x1∈[2,+∞),總存在唯一的x2∈(-∞,2),使得g(x1)=g(x2)成立.試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高一下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,設(shè)函數(shù)其中xÎR.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.
(2)將函數(shù)的圖象的縱坐標(biāo)保持不變,橫坐標(biāo)擴大到原來的兩倍,然后再向右平移個單位得到的圖象,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題12分)設(shè)函數(shù),其中x∈R.
(1)若,求的值域;
(2)將函數(shù)的圖象上所有點的縱坐標(biāo)保持不變,橫坐標(biāo)壓縮為原來的倍得到函數(shù)的圖像,求函數(shù)的遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com