分析 分別求出p,q為真時的x的范圍,根據集合的包含關系得到關于m的不等式組,解出即可.
解答 解:由p:|1-$\frac{x-1}{3}$|≥2,解得:x≤-2或x≥10,
故¬p:-2<x<10,記為集合A={x|-2<x<10},
由q:x2-2x+1-m2≥0(m>0),
解得:x≤1-m或x≥1+m,
故¬q:1-m<x<1+m,
記為集合B={x|1-m<x<1+m},
∵¬p是¬q的必要不充分條件,
∴B?A,
∴$\left\{\begin{array}{l}{1-m≥-2}\\{1+m≤10}\\{m>0}\end{array}\right.$,解得:0<m≤3,
故實數m的取值范圍為(0,3].
點評 本題考查了充分必要條件,考查集合的包含關系以及不等式問題,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-4,+∞) | B. | (-2,+∞) | C. | [-4,-2) | D. | [-4,-2)∪(-2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,-1} | B. | {0,1} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(0,\frac{1}{2}]$ | B. | (0,1) | C. | $(\frac{1}{2},1)$ | D. | $[\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com