雙曲線x2-y2=2008的左、右頂點(diǎn)分別為A1、A2,P為其右支上一點(diǎn),且∠A1PA2=4∠PA1A2,則∠PA1A2等于( )
A.
B.
C.
D.無(wú)法確定
【答案】分析:設(shè)a2=2008,根據(jù)題意可表示A1,A2坐標(biāo),設(shè)出P坐標(biāo),則可分別表示出PA1和PA2的斜率,二者乘求得 ,根據(jù)雙曲線方程可知 =1,進(jìn)而可推斷出-tan∠PA1A2tan∠PA2A1=1.從而tan∠PA1A2tan(5∠PA1A2)=1
最后得出5∠PA1A2=-∠PA1A2即可求得∠PA1A2
解答:解:設(shè)a2=2008,
A1(-a,0),A2(a,0),P(x,y),
kPA1=tan∠PA1A2=,①
kPA2=-tan∠PA2A1=,②
由x2-y2=a2=1,
①×②,得-tan∠PA1A2tan∠PA2A1=1,
∴tan∠PA1A2tan(5∠PA1A2)=1
即tan(5∠PA1A2)=tan( -∠PA1A2
∴5∠PA1A2=-∠PA1A2
∴∠PA1A2=
故選A.
點(diǎn)評(píng):本題以雙曲線為載體,主要考查了雙曲線的簡(jiǎn)單性質(zhì),解析幾何的基礎(chǔ)知識(shí).題中靈活的利用了雙曲線的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-y2=2的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F2的動(dòng)直線與雙曲線相交于A,B兩點(diǎn).
(Ⅰ)若動(dòng)點(diǎn)M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標(biāo)原點(diǎn)),求點(diǎn)M的軌跡方程;
(Ⅱ)在x軸上是否存在定點(diǎn)C,使
CA
CB
為常數(shù)?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-y2=2的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F2的動(dòng)直線與雙曲線相交于A,B兩點(diǎn).若動(dòng)點(diǎn)M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標(biāo)原點(diǎn)),求點(diǎn)M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)若拋物線y2=2px(p>0)的焦點(diǎn)與雙曲線x2-y2=2的右焦點(diǎn)重合,則p的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線x2-y2=2的右焦點(diǎn)F作傾斜角為300的直線,交雙曲線于P,Q兩點(diǎn),則|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(4,3),且P是雙曲線x2-y2=2上一點(diǎn),F(xiàn)2為雙曲線的右焦點(diǎn),則|PA|+|PF2|的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案