已知變量x,y滿足約束條件
1≤x+y≤3
-1≤x-y≤1
,則4x+2y的取值范圍是(  )
A、[0,10]
B、[0,12]
C、[2,10]
D、[2,12]
考點(diǎn):二元一次不等式(組)與平面區(qū)域
專題:不等式的解法及應(yīng)用
分析:作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標(biāo)函數(shù)z=4x+2y對應(yīng)的直線進(jìn)行平移,可得z=4x+2y的最大值為10、最小值為2,由此即可得到z=4x+2y的取值范圍.
解答: 解:作出不等式組
1≤x+y≤3
-1≤x-y≤1
表示的平面區(qū)域,
得到如圖的四邊形及其內(nèi)部,其中A(2,1),B(0,1),
設(shè)z=F(x,y)=4x+2y,將直線l:z=4x+2y進(jìn)行平移,可得
當(dāng)l經(jīng)過點(diǎn)A時(shí),目標(biāo)函數(shù)z達(dá)到最大值,z最大值=F(2,1)=10,
當(dāng)l經(jīng)過點(diǎn)B時(shí),目標(biāo)函數(shù)z達(dá)到最小值,z最小值=F(0,1)=2
因此,z=4x+2y的取值范圍是[2,10]
故選C.
點(diǎn)評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=4x+2y的取值范圍,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)的序列An(xn,0),n∈N*,其中x1=0,x2=
1
2
,A3是線段A1A2的中點(diǎn),A4是線段A2A3的中點(diǎn),…,An是線段An-2An-1(n≥3)的中點(diǎn),
(1)寫出xn與xn-1,xn-2之間的關(guān)系式(n≥3);
(2)設(shè)an=xn+1-xn,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y為正實(shí)數(shù),且x+2y=1,則
1
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞增的等差數(shù)列,它的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等式lg(x+y)=lgx+lgy不是對數(shù)公式,但對某些x,y仍能成立,如x=y=2.試另舉一例使等式成立.x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=logax在[2,4]上最大值比最小值大1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式; 
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2011)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子共裝有9個(gè)球,其中4個(gè)白球,4個(gè)黃球,1個(gè)黑球,每次從袋中取出一個(gè)球(不放回,且每球取到的機(jī)會均等),直到當(dāng)袋中的白球數(shù)小于2個(gè)或黃球數(shù)小于2個(gè)時(shí)才停止取球,記隨機(jī)變量ξ表示取球的次數(shù).
(Ⅰ)求當(dāng)ξ=3時(shí)的概率;
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個(gè)角為30°的三角板,斜邊放在桌面內(nèi),三角板與桌面成30°的二面角,則三角板最短邊所在的直線與桌面所成的角的正弦值為
 

查看答案和解析>>

同步練習(xí)冊答案