設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)求a1+a3+…+a2n+1

解:(I)∵S1=a1=1,且數(shù)列{Sn}是以2為公比的等比數(shù)列,
∴Sn=2n-1.(2分)
又當(dāng)n≥2時,an=Sn-Sn-1=2n-2(2-1)=2n-2.(5分)
(7分)
(II)a3,a5,…,a2n+1是以2為首項,以4為公比的等比數(shù)列,(9分)
.(11分)
∴a1+a3+…+a2n+1=.(13分)
分析:(I)由題設(shè)條件知Sn=2n-1.由此可知
(II)由題設(shè)條件知a3,a5,…,a2n+1是以2為首項,以4為公比的等比數(shù)列,由此可求出a1+a3+…+a2n+1的值.
點(diǎn)評:本題考查數(shù)列性質(zhì)的綜合應(yīng)用,解題時要認(rèn)真審題,仔細(xì)計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊答案